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1.0 PROGRAM PLAN OUTLINE ANO NARRATIVE

I.I Introduction

This Annual Report focuses on the effort that has been completed

during the second year of the technical effort. The total project Is now

expected to last a total of flve years. All elements of the technical

tasks to be accomplished have now been defined. The new effort In the

third year is the Inltlatlon of programlng of the advanced methods

formulation; the approximate methods effort will not begin until the fourth

year of technical effort.

The project is veryuJch a team effort with significant contributions

coming from several task managers: Dr. O.H. Burnside - Verlflcation/Valldatlon

Coordination; Dr. Y.-T. Wu - NESSUS/FPI Development; Ors. J. Nagtegaal, S.

Nakazawa and Mr. J. Dlaz - PFEM Development; Dr. K.R. RaJagopal - Verification

Studies; Or. P. Flnk - NESSUS/EXPERT Development; Prof. P. Wlrschlng -

Advanced Simulation Methods; and Prof. S. Atlurl - Hybrid FEM Development and

Level III Modeling. The SwRI Program Manager acknowledges the critical

contributions from each of these individuals.

The remainder of this Section outlines the elements of the technical

approach being taken in PSAM. Section 2.0 summarizes the technical

accomplishments of the second year of the project, supported by various

appendices. Section 3.0 presents a brief outline of some of the current

efforts.

1.2 Probablllstlc Finite Element Methods (PFEM) Plan

The developed methods of analysis are to treat linear problems as well

as those with nonlinear material and geometric response. Stocha_tlc

modeling of loads {e.g., centrifugal, thermal, pressure), geometry, and

material behavior are being modeled wlth three levels of approximation,

relative to accuracy and confidence. Level I analyses treat randomness as

being spatially homogeneous {e.g., each part has a different modulus, yield

stress, thermal load, etc.). Level II analyses treat random variables as

random fields {e.g., modulus variability is different In the bore of a

disk, versus the rim of the disk; pressure uncertainty is different at the

root of an airfoil versus the tip of the blade). Level III stochastic

modeling is to be able to reflect uncertainty between variables In the

governing equations {e.g., strain agrees with displacement gradients only
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in stochastic, not deterministic, terms; stress is related to strain

through stochastic relations).

Two methods of probablllstlc modeling are included in the various

analysis methods. The first of these is the Fast Probability Integration

(FPI) method. The FPI method is adopted from the field of structural

reliability as a way of predicting the probability that a response variable

(e.g., stress, frequency) will exceed some alFowable. The method is based on

establlshlng the approxlmatelsensltlvlty of a response variable to the

stochastic variables, and then processing these sensitivities by the FPI

algorithm to establish the cumulative response distributions for the

variables. The second method is direct simulation using an enhanced Monte

Carlo method. Both probablllstlc prediction methods will make use of the s_

structural sensitlv_ty data base, which is generated by NESSUS. Confidence

levels will be estimated for the response variable distributions that are

calculated. A composite load spectrum analysis procedure will be included.

The PFEM is a direct adaptation of standard finite element methodology to

the needs of PSAM. The finite element code (NESSUS/FEM) is to include

plate and shell elements based initially on the displacement method of

formulation, and on linear equations of motion and material behavior.

Hybrid plate and shell elements are to be included, as well as nonlinear

geometric and material behavior. The NESSUS/FEM code will include a

variety of standard finite elements for structural modeling. The

NESSUS/FEM program will allow for nonlinear elastoplastlc/creep modeling,

and for geometric nonlinear problems of finite displacement, rotation, and

strain.

In addition, an enhanced shell/plate element formulation will be

developed. This enhanced formulation will be a quasi-continuum element

that provides for surface data input and nodal stress recovery, consistent

with the requirements of the NASA SOW. The enhanced element is a

displacement formulation, developed from the Hu-Washlzu variational

formulation. Stresses, strains, and displacements will be interpolated

independently. In order to reduce the formulation to a displacement-like

formulation, the stress and strain fields are discontinuous between the

elements. Displacements will be interpolated on a nodal basis, with nodes

selected at the surfaces of the shell/plate element. The element will

satisfy all constant stress modes and will provide full rigid body mode



3

capability (i.e., has correct rank). The eight noded element wlll provide

for surface pressure load definition, as well as for nodal stress, strain

recovery.

The hybrid element formulation is also based on the Hu-Washizu

variational statement. Thus, it will have stress modes that are defined

independent of the displacement modes. The element will be a sixteen node

shell/plate element with surface loading and nodal stress, strain recovery

capability. Special interpolation capability for severe thermal gradients is

planned In both the enhanced and hybrid shell/plate formulations.

Material response is to include the range from elastic to

thermoviscoplastic. The material model will be based on theoretical

development for a random relationship between stress and strain for the

general class of thermomechanical response problems. The material modeling

considerations will allow for a full, Level Ill interpretation of

stress/strain stochastlclty. The model will be based on the assumption

that each material has its own stochastic response over the full range of

loading history. Thus, we rule out as a mathematical construct, the notion

of incremental stochasticity. The theoretical material modeling development

will admit implementation of endochronic or_hermoviscoplastic considerations.

The NESSUS code is modular for adaptation to the General Purpose

Structural Analysis (GPSA) framework. The modules include NESSUS/FEM,

NESSUS/PAAM, NESSUS/BEM, NESSUS/FPI, NESSUS/PRE, NESSUS/EXPERT, and

others as needed. Interfaces between these modules will be clearly

defined.

The approach to validation is to perform validation and verification

studies on the new element and formulation capabilities as they become

available. This will also provide for direct comparisons between the

various solution capabilities. The NESSUS code is to be continually

validated through its application to well-defined problems with known

probabillstic responses in order to demonstrate the full and reliable

capability of the code.

It has been found to be very important that the verification study

include a wide range of simple structural models that exercise the various

options of the NESSUS code. These verification problems, being run by SwRI

and Rocketdyne, serve to provide further confidence in the code, to develop

rule bases for NESSUS/EXPERT, and demonstrate the utility of the code.
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The NESSUS code will be verified by Its application to four selected

space propulsion system hardware items. These will include the turbine

blade, transfer duct, LOX post, and the high pressure oxidizer duct.

Experimental data to support the analyses will be compiled and

statistically modeled. The four verification problems are outlined in

Appendix A. _ ...............................

1.3 Probablllstlc Approximate Analysis Methods (PAAM) Plan

The PAAM code wlll be established by SwRI In consultation wlth

Rocketdyne staff. The purpose of the PAAM code Is to provide a mechanics

of materials approach to the probabllistic modellng of plate and shell type

structures. The approach to be taken by SwRl will be to:

I. Identify simplified plate/shell problems representative of plate

and shell regions within the four selected propulsion system
components.

2. Identify plate and shell type analytical solutions that

correspond best to the physical problems identified in 1., above.

3. Modify the analytical solutions to account, in a suitable and

approximate manner, the loading, material response, and structural

response features required for the four component problems.

4. Program NESSUS/PAAM to include a library of these solutions and

approximation methods for loading, material response, and structural
response.

1.4 Probabilistic Advanced Methods (PAdvAM) Plan

The basis of the Probabilistlc Advanced Analysis Methods is the boundary

element method, specifically the BEST3D code previously developed under NASA

HOST funding. SwRI has further developed this code and proposesto modify it

in a manner suitable for inclusion in the PSAM analysis library as NESSUS/BEM.

The boundary element method (BEM) contrasts, for the linear problem,

with the finite element method (FEM) by the fact that the governing

equations are written at the boundary of the body only. The so-called

boundary integral equation (BIE) governs the relationship between tractions

and displacements at the surface of the body. The only geometric

description of the body that is required is the surface of the body. For

the thermoelastic problem with variable material properties and problems of

linear vibration, It is also possible to reduce the continuum problem to a

boundary formulation. For problems with geometric or material nonlinearities,

and for transient dynamic problems, a volume modeling is generally required.
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The perturbation algorithm wtll be developed for NESSUS/BEM. For

those problems with no volume Integrations, all perturbations wlll be tn

terms of surface data. Geometry, for example, wtll be perturbed through

expltctt differentiation of the boundary modeltng shape functions. The

perturbations wtll maintain continuity of boundary shape by moving the

boundary node locations. Perturbations of the mass matrix for vibration

analysis wtll be similarly modeled. Level I matertal perturbations wtll be

explicitly accounted for.

Level II and Level Ill material perturbations wlll be examined using

one of two possible approaches. Themost direct Is to handle these through

volume integrals (discussed below). The most interesting is to develop

boundary models that can interpolate volumetric changes, In terms of

perturbed boundary data. The latter approach Is favored and wlll be the

first to be explored. Explicit differentiation or differencing of boundary

data will be used in order to avoid an iteratlve solution algorithm.

Volume integration methods will be especially developed for NESSUS/BEM

to take advantage of plate/shell type of behavior. Simplifying

interpolation assumptions will be made to reduce the need for significant

numbers of volume discretizations in the through-thlckness direction. It

will be assumed that deviations In strain behavior in this direction from

the linear solution are not excessive.

The first year (FYB7) will establish the linear static and dynamic

thermoelastic modeling capability for NESSUS/BEM. The second year (FYBS)

will focus on the establishment of the essential nonlinear modeling

capability, but without the full Level Ill thermovlscoplastlc modeling and

random transient loading. The third and final year (FYBg) will release the

full nonlinear capability.

The stochastic basis of a variational model of structural response

will be established by GIT researchers under the direction of Professor

Satya Atluri. The stochastic variational statement will be used to

demonstrate the formulation basis of the Level I, II NESSUS PFEM models.

Further, it will be used to establish the Level III formulation for

adoption Into NESSUS. It is expected that the Level Ill model will be

based on the use of correlation model matrices linking the strains and the

displacement gradients, and another linking stress to the material

constitutive behavior.
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2.0 TECHNICAL PROGRESS SUMMARY

2.1 Task I: PFEM

2.1.1 NESSUS/FEM Development

2.1.1.1 Status at End FY85

The finite element analysis module NESSUS/FEM has evolved

from the NHOST code, developed by MARC for Pratt and Whitney Aircraft Company

under NASA contract NAS3-23697. A review of the capabilities of MHOST by SwRI

indicated the need for enhancements to provide additional features relevant

to the analysis of reusable space propulsion system componen¢s. This

enhanced version of the MHOST code was delivered to SwRI in August 1985 as

NESSUS 0.I, and was the latest version of the code shipped from MARC prior

to the end of FY85.

The major enhancements provided with NESSUS 0.1 included:

A. Element library and problem modeling features
o Addition of a two-noded Timoshenko beam element

o Rotational inertia terms in consistent mass matrices

o Grounded springs of prescribed stiffness

o More convenient definition of time-hlstories for pulse
loading

B. Algorithmic enhancements

o Displacement method option for linear elastostatlcs

o Power shift option for elgenvalue extraction

C. Analysis capabilities for linear systems

o Transient dynamics using mode superpositlon
o Harmonic loading and base excitation

o Random vibration (PSD) analysis

By the end of FY85, the basic formulation for probabilistic finite

element analysis as implemented in NE$SUS had been developed and

demonstrated on a few sample problems. The original approach relied on a

Taylor serles expansion of the stochastic problem about a deterministic

solution. This approach did not appear to be practical for the large

systems of finite element equations parameterized by many random variables

that are needed for realist|c SSME applications. An alternative approach

was developed, based on an iterative perturbation analysis method that uses

the factorized stiffness of the unperturbed system as the iteration

preconditloner for obtaining the solution to the perturbed problem. This

approach eliminates the need to compute, store and manipulate explicit partial

derivatives of the element matrices and force vector, which not only reduces
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memoryusage considerably, but also greatly simplifies the coding and

validation tasks. A similar approach for the solution of the perturbed

symmetric eigenproblem was developed by Professor Juan Simo, at the Applied

Mechanics Division, Stanford University, for implementation in NESSUS/FEM.

The efficient treatment of correlated random variable fields was

identified early on in the PSAM effort as a major practical issue, since

many SSME applications involve random variables that are correlated to some

degree. Examples of this include random pressure and temperature fields

defined on the surface of a turbine blade, or the thickness of the walls

and liners in the transfer ducts or nozzle of a rocket engine. The

strategy adopted in the NESSUS code relies on a variable transformation

into the eigencoordinates of the covarlance matrix defining the random

field. The transformed variables can be shown to be uncorrelated and may

therefore be manipulated as such in the NESSUS/FEM and NESSUS/FPI modules.

The computation of the transformed variables may be carried out prior to

the finite element analysis of the model and may, therefore, be regarded as a

pre-processing operation.

Several aspects of the proposed formulation were demonstrated on an

ad-hoc basis before the end of FY85. The feasibility of the iterative

perturbation algorithm for elastostatics was demonstrated in April 1985

with a problem involving a clamped square plate under uniform pressure

loading, using a 10 x 10 mesh of shell elements and subjected to thickness

variations along one edge. The numerical manipulations proposed for

handling correlated data were demonstrated also in April 1985 with a

problem involving a scalar random variable field defined on a 10 X 10 grid

with varying strength of correlation. Finally, all ingredients for the

proposed formulation were combined in a demonstration problem using a

simplified model of a curved turbine blade discretized with 4B shell

elements, and having random pressure and temperature fields with partial

correlation, random uniform thickness, and random stiffness at the root.

This exercise was completed in May 1985. Although the formulation for the

iterative solution of the perturbed symmetric eigenproblem was essentially

complete by the end of FY85, no demonstration problems using this approach

were available at the time.
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2.1.1.2 Database Development

The perturbation database (Fig. 2.1) provides an external

record of the perturbation data obtained during execution of the NESSUS/FEM

module. In a typical NESSUS/FEM execution, a number of perturbed solutions

about a deterministic state are computed with the use of appropriate numerical

algorithms. The results for both the unperturbed and all perturbed systems

are added to the perturbation database as soon as each converged solution

becomes available. The information stored In the database may then be

accessed by the NESSUS/FPI module, in order to extract the data required for

the computation of a system reliability estimate or to obtain distribution

curves for relevant response variables. The perturbation database is problem-

specific, and was designed to centralize all the information pertinent to the

analysis of a given model, even if it is obtained in the course of multiple

NESSUS/FEM executions. Future releases of NESSUS/FEM will allow full use of

these capabilities.

The perturbation database resides in a binary

(unformatted) direct-access file, and may be accessed using standard FORTRAN

I/O facilities. The database is structured as a two-way ordered linked llst

(Fig. 2.2), allowing for quick and efficient traversal in search of a specific

entry. This type of data structure allows for the insertion and deletion of

individual entries anywhere in the list without violating the original

ordering convention (Fig. 2.3). It is therefore possible to enrich the

existing database with information obtained in multiple executions of

NESSUS/FEM without having to regenerate data obtained in previous runs.

The organization of a typical database constructed by

NESSUS/FEM is outlined In Fig. 2.4. The entry point is a single PROBLEM

HEADER RECORD, always occupying the first physical record In the file. This

record contains sizing information pertinent to the problem, together with

pointers to two distinct ordered linked lists. One llst contains the load

incrementation history, with the individual perturbation data sets nested

inside each increment. The second list contains the elgenvalue and

eigenvector data, this time with the individual eigenpairs nested inside each

perturbation data set. Both lists consist in a series of INCREMENTAL or

EIGENPAIR DATA HEADER RECORDS, forming two two-way ordered linked lists, shown

in Fig. 2.4 as extending downward and upward from the single entry point.

These headers in turn contain pointers to the actual DATA RECORDS, containing



NESSUS/EXPERT

NESSUS/FPI

Fig. 2.1 The NESSUS Perturbation Database
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Fig. 2.2 A Two-way Linked List

Flg. 2.3 Insertion of a New Item in a Two-way Linked List, and Deletion of

Another Item from a Similar Linked List, as Shown by the Dashed
Lines



  a.nr g. 2
Bar turbat/on 2

ll

Eiger_vaiv I
P#vt_arb_ion 2

Bigcr_vaiv 2
Porta_rbation 0

Eigenl_ir 3
Perta_rbation 0

X_obX_ Header

(_nt_ Point)

Z_,rm_ent 0

Perturbation 0

Xnorwnent 0
Perturbation 2

Inor_nt 0
Perturbation 2

Inor_ent 2
Per_v.rbation 0

I_*r#ment 2
Perturbation 2

Fig. 2.4 Data Structure of the NESSUS Perturbation Database
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information on the type of perturbation and the perturbed system response. A

null pointer is used to flag the unavailability of data, which may result from

the lack of a converged solution. Null pointers are also used to terminate

both the incremental and eigenpair data lists.

The present implementation of the perturbation database

provides easy and efficient data retrieval using standard algorithms for

manipulating ordered llnked lists. Insertion and deletion of individual

entries can be accomplished locally without the need for moving large blocks

of data. The internal data structure was designed with the flexibility to

accommodate additional capabilities planned for future releases of NESSUS/FEM

with minimal adjustments to the software already in place. The use of binary

(unformatted) files provides compact storage for the potentially massive

amounts of data required for the analysis of realistic problems. For small

problems, a simple FORTRAN utility is available to provide translation of the

database into formatted (printable) form. This can be quite useful for

debugging codes written to access the database, or for moving small databases

across different computer systems. The internal data structure of the

perturbation database is well documented in a report which can be used as a

guide for the development of new codes requirihg access to existing

databases. Finally, it should be noted that the information contained in the

perturbation database may be useful for applications other than probabillstlc

structural analysis, such as the investigation of the sensitivity of the

response to several design parameters.

2.1.1.3 NESSUS/PRE Module Development

The NESSUS/PRE module (Fig. 2.5) is a pre-processor used

for the preparation of the statistical data needed to perform probabilistic

finite element analysis with NESSUS/FEM. NESSUS/PRE allows the user to

describe a spatial domain defined by a set of discrete points, typically

corresponding to the nodal points of an existing finite element mesh. One or

more random variable fields may then be specified over thls spatial domain by

defining the mean value and standard deviation of the field variables at each

at each point, together with the appropriate form of correlation. Each random

variable field may be modeled as uncorrelated, fully correlated or partially

correlated. The current version of NESSUS/PRE limits the treatment of

partially correlated fields to fields of Gaussian variables with equal

correlation strength in all directions (isotropic correlation).
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NESSUS/EXPERT

NESSUS/FEM

NESSUS/FPI

]Analysis

Log
File

Perturbation
Database

Ftg. 2.5 The NESSUS/PRE Module
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Each random field Is treated accordlng to the form of

correlation specified for It. Uncorrelated r)ndom fields are automatically

decomposed Into a set of uncorrelated vectors, each corresponding to a unit

variation at a given degree-of-freedom. Fully correlated fields are

automatically converted to a single vector, corresponding to a scaling of the

random field by one standard deviation. For a partially correlated random

field, the preprocesslng operation In NESSUS/PRE is considerably more

complex. This will involve the construction of the varlance-covarlance matrix

for the field, followed by the spectral decomposition of thls matrix. The

field data is then transformed into the elgencoordlnates of the covarlance

matrix, yielding a set of mutually uncorrelated random vectors which contain

all the information present In the original correlated field. The theoretical

details of this procedure are given In Section 5.3.1 of the PSAM First Annual

Report. The spectral decomposition of the covarlance matrix is performed

conservatively, using Jacoblan iteration to solve simultaneously for all

elgenvalues and elgenvectors of the matrix. If the correlation Is strong, the

uncertainty In the data is dominated by just a few of the highest elgenvalues

of the matrix. Hence, the user Is given the option to simplify the problem by

truncating the spectrum to a prescribed tolerance, retaining only the most

significant elgenvalues for the analysis. This strategy can produce a very

significant reduction in the amount of computation required for the analysis,

especially in problems involving a large number of random variables. In all

cases, the output from NESSUS/PRE will consist of a set of uncorrelated random

vectors written to an external formatted data file. This file will contain

the random variable definitions for NESSUS/FEM, and may be included in the

input deck to the finite element module without further modification.

The present implementation of NESSUS/PRE allows the

specification of random fields involving:

i. nodal coordinate data

2. nodal shell thickness

3. nodal shell or beam normals

4. thickness of plane stress elements

5. modulus of elasticity

6. Poisson's ratio
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7. thermal expansion coefficient

8. material density

g. rotational speed

I0. nodal force vectors

II. element pressures andedge tractions

12. nodal temperatures

13. elastic beam section properties

14. base spring stlffnesses

15. orientation of anlsotropy axes

Additional types of random variables will be included in

future releases of NESSUS/PRE as required by the enhanced capabilities of

NESSUS/FEN.

2.1.1.4 Code Structure

The NESSUS/FEM module (Fig. 2.6) provides finite element

modeling and analysis capabilities for probablllstlc structural analysis

problems. The finite element code is structured as a set of slx major driver

routines, reflecting the types of analysis currently available. These

include:

1.

.

.

.

.

.

A static analysis driver for the solution of linear and

nonlinear problems in either a purely iteratlve manner or in
incremental-iterative fashion.

A bifurcation buckling driver, used for stability analysis of
llnearized structural systems.

A modal extraction driver for the determination of the

undamped natural frequencies and mode shapes for vibrating
structures.

A mode superpositlon driver for the analysis of steady state

or transient linear vibration problems in the tlme domain.

A random vibration driver for the analysis of problems

involving stationary random excitation by integration In the
frequency domain.

A direct time integration driver using the Newmark-b method

for the solution of linear and nonlinear transient dynamics
problems.
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NESSUS/FPI

Fig. 2.6 The NESSUS/FEM l,lodule
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A new facility has been added at the topmost level of

NESSUS/FEM to allow conditional transfer of control between driver routines.

This feature allows the performance of more sophisticated types of analysis,

which are useful for the realistic modeling of typical SSME components. A

typical application might involve the static analysis of a spinning turbine

blade, with centrifugal loading applied over a number of load increments.

At a prescribed increment number, control of the execution may be

transferred to the modal extraction driver, in order to determine the

vibration characteristics of the blade, including centrifugal mass and

stress stiffening effects due to the initial stresses obtained in the

static analysis. These features were first available In Version 1.2 of the

code.

Significant efficiency improvements were achieved by

replacing the old band and frontal equation solvers with a newly developed

profile solver. The new solver, available in Version 1.3, not only provided

increased speed in the factorlzatlon and back substitution phases of the

analysis, but also resulted in a substantial reduction of memory requirements

for medium to large problems. This allowed the in-core solution of large

turbine blade models using 8-noded bricks. Selected performance results for

the new solver are summarized in Fig. 2.7 - Fig. 2.9. These numbers were

obtained on the PRIME 9955 at MARC, with the memory requirements expressed in

single precision (32 bit) words.

The extraction of elgenvalues for both linear dynamics

and buckling problems is performed using the subspace iteration method.

Multiple power shifts may be used to extract modes within prescribed frequency

bounds. This technique is particularly use{ul in the analysis of structures

containing rigid-body modes. The elgenvalue analysis subsystem is very

similar to the one available in NESSUS 1.0, having been modified to

accommodate profile storage for the stiffness and mass matrices, together

wlth other minor efficiency improvements.

A full library of modern algorithms for nonlinear

analysis is available in NESSUS/FEM. Both full Newton and modified Newton

iteration algorithms have been available since Version 0.1. Newly implemented

algorithms for nonlinear analysis include the line search algorithm,

Davidon rank-one secant Newton update and inverse BFGS rank-two update.

These algorithms have been available in Version 1.0 and up. Variations of
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_81181

Fig. 2.7 SSHE HPFTP Blade Hodel with 1025 Brick Elements and 1575 Nodes

Profile Solver Band Solver

Memory Requirement 3483811 _459647
Solution Time 1466.594 sec N/A*

* Too Large to Run on PRIHE 9955 at MARC
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Fig. 2.8 Buckling Analysis of a Cylinder with 160 Shell Elements and 176
Nodes

Profile Solver Band Solver

Memory Requirement
(a) Static 498873 596703
(b) Eigenvalue 1044773 1340375

Solution Time

(a) Static 62.057 sec 171.430 sec
(b) Eigenvalue 66.788 sec 187.551 sec
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Flg. 2.9 Modal Analysis of a Composite Laminate Fan Blade with 240 Shell
Elements and 279 Nodes

Memory Requirement
Solution Time

Profile Solver

824341
24.794 sec

Band Solver

1054259

93.764 sec
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many of these algorithms have since been applied to the computation of the

solutlon to the perturbed elastostatlc problem, as dlscussed in Section

2.1.1.6 of this report.

2.1.1.5 Element Technology

The element library currently available in NESSUS

consists of slx Isoparametrlc, numerically integrated element types (see Table

2.1). Geometric quantities and material properties are defined at the nodes,

and interpolated into the interior of each element using the appropriate shape

functions. A nodal projection and smoothing algorithm Is used to allow the

reporting of strains and stresses on a nodal basis.

Continuum-type problems may be modeled using billnear

four-node quadrilaterals for plane stress, plane strain or axlsymmetrlc

situations, or trlllnear elght-node bricks for three-dimensional problems.

All B-matrlx routines for continuum elements allow full, reduced, trapezoidal

and selective integration. Selective integration Is implemented using the

B-bar approach, and has been designed to facilitate the implementation and

testing of different integration weighting schemes. The performance of

these elements has recently been improved wlth the adoption of a strain

filtering scheme based on a local element orthogonal coordinate system

constructed by polar decomposition of the Jacoblan matrix for the

Isoparametrlc mapping. This technique enhanced the behavior of the element

In situations involving distorted elements.

The shell element currently available In NESSUS Is a

four-node Isoparametrlc formulation derived from the Relssner-Mlndlln plate

and shell theory. Blllnear interpolations are used for the coordinates,

displacements and rotations. The element Is selectively integrated, and

stabilized by hourglass control on the transverse shear terms. An In-plane

twist term Is included to avoid the "drilling mode" singularity on a flat

assembly of elements. This element may be used to model thick shell

problems, wlth significant transverse shear deformation, and retains

acceptable accuracy when used to model thin shell structures.

A two-node linear Isoparametrlc beam element is also

available, based on Tlmoshenko beam theory. Linear interpolations are used

for the cross-section, displacements and rotations. Reduced one-polnt

integration Is used for economy, since this wlll yield a rank-sufficlent

stiffness matrix for the element. Since the cross-sectional properties for
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Table 2.1

Summary of the NESSUSElement Ltbrary

P. STRS

ITYeE L

NELCP,D !

NELNOD ]

NELSTR I

_ELC_ !

NELINT l:_, t.+

NELLY I 3

NELL_Y 1 1

NDI J 2

NSHEAR J I -

jIAW ,! 2

P.$TRN
i i i| H ill

I II

2 I 2

2 !.. 2,,

4 I 4

i, t_

I 4

!

!

I

I

AXSYM BRICK SHELL T. BEAM

l, , ,

1 I

3 I

1-- I

3 !

I 10 _1 7 I 75 ! 98 !

! 2 I 3 !.._ 3 I 6 I

I 2 I 3 ! 6 ! 6 I

I 4 I 8 1 4 I 2 J

1 4 I _ ! _ I _ !

! s .t s I _ l _ I

I _ I O I _ I 1 I

s I 3 I _ I _ !

I 11,1- i 5 , I l

I _ I 2 I _ I

1 I 3 I I I 3 I

1 5 I _ !,, ,7 I

ITYPE
NELCRD

NELNFR
NELNOD
NELSTR

NELCHR
NELINT

NELLV
NELLAY

NDI

NSHEAR
JLAW

Element type number.
Number of coordinate data per node.
Number of degrees-of-freedom per node.
Number of nodes per element.
Number of stress and strain components par node.
Number of material property data for the element.
Number of 'full' integration points per element.
Number of distributed load types per element.
Number of layers of integration through the thickness of the
shell element.
Number of direct stress components.
Number of shear stress components.
Type of the constitutive equation.
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this element are defined in pre-lntegrated form, Its use is restricted to

linear elastic problems.

In recent PSAM meetings a strong desire has been

expressed for the development of advanced element technology needed to address

specific SSME applications In an effectlve manner. Many of these appllcatlons

Involve locallzed effects which cannot be captured using the classlcal plate

theories. Examples Include strong curvature, strong thickness variations

or locallzed mechanlcal or thermal loadlng. In prlnclple, continuum theory

wlll always be able to model the proper solutlon. However, regular

continuum elements lack the appropriate deformatlonmodes to model

shel1-1ike behavior in a satisfactory way. Recent developments in element

formulatlon suggest that it may be posslble to construct continuum elements

with enhanced bendlng behavior that would perform well when degenerated in

one direction to form a shell-like element. The development of such an

element was proposed by MARC for implementatlon in the NESSUS code.

2.1.1.6 Solution Strategy and Algorithms

The use of FPI methods In probabilistlc finite element

analysls involves the repeated computation of the structural response for

small perturbations of the random parameters about a given deterministic

state. Probabllistlc models of realistlc structural systems can be quite

complex, requiring the analysis of large finite element models parameterized

by many random variables. The computational effort expended In the generation

of perturbed solutlons for these models vastly exceeds that required for all

other phases in the analysis. Hence, the ability to efficiently compute

the response of the perturbed system is cruclal to the viability of the

method.

For linear elastostatics, the basic perturbation problem

may be expressed as follows. Given the solution to the unperturbed set of

finite element equations

K u --f (I)

it is desirable to obtain the solution to the perturbed problem

M A

Ku : f (2)
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A where

K=K+dK

U=U+dO

f'f+df

(3)

Substitution of these definitions tnto the equation for the

perturbed problem w111 yield

(K + dK)(u + du) - (f + dr) (4)

K du= (f + df) - (K + dK) u - dK du

A A

Kdu = f- K u - dK du

(s)

(6)

Several methods have been proposed for the solution of

the problem in this form. A first-order perturbation method may be obtained

by neglecting the last term (second-order), and solving for a first-order

approximation to du. This approximation can be shown to correspond to the

first term In the Taylor series expansion for du. Hlgher-order

perturbation methods are obtained by carrying along additional terms in the

Taylor series expansion.

The perturbation strategy adopted in NESSUS/FEM is based

on the recovery of the higher-order terms by an Iteratlve process. A suitable

algorithm is provided by the recurslon form

(7)

G(rH-l) . _(n) + d_(n+l) (8)

This process is equivalent to a modified Newton

iteration, and can be shown to satisfy the appropriate consistency

condition. The stability of the algorithm will be discussed in Section

2.1.1.7 in some detail.
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Manyadvantages maybe derived from adopting this

strategy. It should be noted that all computations with the perturbed system

can be performed at the element level, and only the resulting element internal

force vectors need be assembled into a global vector, This residual force

vector must be computed at every iteration step, and provides a direct measure

of the quality of the approximation that is used to establish convergence.

Furthermore, this approach eliminates the need to compute and store

explicit partial derlvatlves of the element stiffness and load vector, or

any assembled form of these quantities. This not only significantly

reduces data storage requirements, but also greatly simplifies the coding

and validation tasks. The perturbation of geometry and material data is

made independent of the element formulation adopted, which allows simple

extension of the method to newer element technologies. The overall

efficiency of the method can easlly be Justified on the basis of well-known

operation count statistics for large finite element problems.

Additional efficiency improvements are obtainable from

recasting the perturbation problem as an Iteratlve process. This allows the

implementation of a number of convergence acceleration methods for

Iteratlve problems, such as the line search algorithm and quasi-Newton

iteration schemes. In particular, significant performance improvements

have been demonstrated with the use of either Davldon rank-one secant

Newton update or inverse BFGS rank-two update applied to the perturbed

elastostatlc problem. The present implementation of the llne search

algorithm does not appear to be very cost-efficient for llnear elastostatlc

problems. This is, in part, due to the fact that it has been implemented

as a truly nonlinear line search, since the final goals of the PSAH project

call for the extension of the perturbation algorithms to nonlinear

problems.

A similar perturbation algorithm for the symmetric

elgenproblem with iteratlve improvement also has been developed and

incorporated in NESSUS/FEM. This algorithm differs from earlier elgenproblem

perturbation methods by the fact that it has been developed from the start

with the intent to tackle realistic structural vibration problems. The

problem of properly splitting elgenvalue clusters in the spectrum of the

unperturbed problem was identified early on in the algorithm development. A

solution was developed, involving a reduced elgenproblem with the dimension of
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the multiplicity of etgenvalues in the cluster. Similar formulations

typlcally Involve the solution of a larger etgenvalue problem, wtthdtmenstons

of at least the number of perturbed elgenvalues. An error estimate to account

for the effect of a truncated modal representation is also provided. The

ftnal form of the algorithm ts independent of the method used to obtain the

starting etgenpalrs, and can be used with any of the modern algorithms for

the solutton of large symmetric positive-definite etgenproblems.

These perturbation analysls algorlthms have been

available in NESSUS/FEM since Version 1.0 and have been successfully applted

to a broad class of linear problems. It is expected that much of the code

developed for the perturbation of linear elastostattcs problems wtll be able

to handle weakly nonlinear situations with only mtnor modifications.

2.1.1.7 Stablltty Considerations

The tteratlve perturbation analysts algorithms available

in NESSUS have been successfully applted to a broad range of structural

problems over the past year. The experience acquired tn this testing and

validation phase also identified a class of problems for which the tterattve

process was observed to become unstable with seemingly small values of the

perturbation parameter. The problem was first encountered tn the analysts

of validation problem #2, described in Section 4.0 of Volume III of the PSAM

First Year Progress Report. This problem tnvolved the analysis of a thin

cantilever beam using blltnear Relssner-Mindltn shell elements (NESSUS

element 75) under bendtng. The stiffness equations for this problem are

poorly conditioned, as a result of the enforcement of the transverse shear

constraint in the thin limlt of the Relssner-Mtndltn theory. The problem

was observed to be particularly sensitive tolgeometry perturbations

Involving changes in element length, which often resulted in loss of

stability of the tterattve algorithm even for small elongations of the

mesh.

A detailed investigation into the nature of the problem

was undertaken at MARC, and the major findings are summarized in Appendix B to

this report. The investigation concentrated on the analysis of a simpler

model problem, involving a mesh of linearly interpolated Timoshenko beam

elements. This is the one-dlmenslonal analog of the Reissner-Mindlin plate

problem, and exhibits pathological behavior identical to that observed in

the plate problem, while offering a much simpler formulation and far more
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amenable to a detalled analysls. Early on In the course of the

investigation the problem was found to be governed by the characteristics

of the assembled stiffness equations. A yon Neumann stability analysls of

the assembled equations at a typical internal node for the model problem

was performed, which provided closed-form expressions for the stabllity

llmit in the case of uniform mesh elongation. These stability limits were

found to accurately predict loss of stability for numerical experiments

involving both beam and shell element dlscretizatlons of the model problem.

These results can be used to estimate the stability limlts for more general

beam and plate problems, providing an upper bond for the size of the

perturbation parameter that will preserve the stability of the algorlthm.

In general, stabllity w111 present a concern for the

analysis of any problem involving some form of impliclt constraint equations

in the underlying theory. Stability problems will typically arise whenever

geometry perturbations affecting these constraint equations are imposed on

the unperturbed problem. Such problems include the analysis of

o Thin plates and shells allowing shear deformation

o Incompressible elasticity, e.g., rubber-llke materials
o Strongly anisotropic materials

o Deviatoric rate-independent plasticity

o Incompressible Stokes and Navier-Stokes flow

Several of these problems are relevant to SSME

applications. It must be noted that alternatlve formulations based on a

Taylor series expansion about the unperturbed system are not immune to the

problem. This may be concluded by noting that the speed of convergence of the

iterative algorithm is closely related to the error associated with the

truncation of the Taylor series. The analysis of the general problem is

complicated by the fact that stability is often governed by the lowest

deformation modes present in the assembled stiffness equations. Thus, the

development of general closed-form results for unstructured, multl-dimenslonal

meshes subjected to non-uniform distortion does not appear to be practical.

However, the insight obtained from the analysis of simple model problems

can be used to develop "smart" algorithms capable of adaptlvely adjusting

the perturbation size in order to retain good convergence characteristics.

These stabillty considerations further emphasize the need to allow for a
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reformulation ef_ the deterministic problem at a point sufficiently close to

the design polintto obtain a good representation of the limit surface

within the stal_i_ity bounds Imposed by the algorlthm.

2.L_.8 Inelastic Algorithm Development

The iterative perturbation analysis algorithms developed

for the llnea_-e_astostatic problem Involve no assumptions on the linearlty of

the problem, a_nly minor coding and data management modifications should be

necessary to e_t_end these algorithms to situations involving mild

nonlinearity. II_ perturbation database must be extended to include a record

of the nodal _In histories, and the finite element code must be modified to

carry along i_ll_rallel the incremental solution data for all perturbed

problems. Pert_bations must be allowed on additional types of variables,

such as the m_tI(erlal's elastoplastic constants. Thls will involve extensions

to both the NF._US/PRE and NESSUS/FEM modules.

II1_extension of the perturbation algorithms in NESSUS/FEM to

inelastic probleeas raises important issues, which will affect the development

of nonlinear aT_orlthms for the remaining years of PFEM development. Version

1.1 of NESSU_vtFE_ provides solution algorithms for deterministic linear

problems using e_ther a displacement-based or mixed Iterative finite element

formulation. @_ll_development of perturbation analysis algorithms to date has

been based o_tl_ displacement formulation. Implementation of the

displacement metIhod for inelastic analysis will require changes to the

internal dates borage in the code, in order to retain the element strain

history record e)t the integration points. All data input and reporting of

strains and stresses as perceived by the user can still be performed on a

nodal basis. #(r_Iternate approach suggested by the NASA contract monitor

involves the mdI_tlon of the mixed finite element formulation for

probabillstlcm_falysls, In order to maintain the node-orlented internal data

storage currestT_ implemented in the code. This approach would lend itself to

a somewhat mor_legant implementation of some algorithms, but also involves

substantial rlsk _associated with the adoption of less mature finite element

technology. Bef_ore adopting the mixed approach for probabilistic finite

element analysing, the existing perturbation algorithms must be exercised and

tested with slm_e elastostatics problems using the mixed formulation. This

step is needed bo ensure that no unexpected problems arise from the use of the

current soluti_e_ strategy with the mixed finite element formulation. If the
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results of thls experiment are positive, then it will be reasonable to

consider proceeding with the mixed method for the development of inelastic

solution algorithms In NESSUS/FEM.

Further development of inelastic algorithms for probablllstlc

finite element analysis Is awaiting the outcome of the decision on the finite

element formulation to be pursued.

2.1.2 NESSUS/FPI Development

2.1.2.1 Eigenvalue Models for Non-normal Distributions

Eigenvalue models for normally distributed, correlated

variables (Reference [I]) have been used In the NESSUS code to solve problems

involving random fields such as pressure or temperature fields. The

NESSUS/PRE module is designed to generate uncorrelated variables based on

the covariance matrix of the dependent variables. This is described above

in Section 2.1.1.3. The reasons for using the eigenvalue models are:

I. Uncorrelated variables allow fast probability estimation

using the NESSUS/FPI module.

2. The number of the significant uncorrelated variables Is

always less than the number of the correlated variables, and

therefore the eigenvalue model Is able to reduce the dimension

of the random variables entering the perturbation analysis.

To extend the above method to problems involving non-

normally distributed, correlated variables, a model has also been formulated

[2]. However, the new model is still under investigation and Is not yet

included in the NESSUS code system. A summary of the method Is given In thls

section. An example involving a highly non-normally distributed variable

is given to test the model. The results suggest that, In order to obtain

accurate transformed correlation coefficients, higher order terms In the

Taylor's series expansion that is used must be retained. Therefore, a more

accurate formula relative to the one derived In [2] has been derived and Is

reviewed in this section.

The eigenvalue model for the non-normally distributed,

correlated varlables requires two extra steps: the transformation of all

variables to the normal distribution space; and, the derivation of the

correlation coefficients of the transformed normally distributed variables.

The normalization process is defined in (9),
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Fxi(Xl) - oi(ul) i-l,n (g)

where FXI(. ) is the original marginal distribution of the random variable

Xi, where o(.) is the normal CDF, and where u i is a standard normal

variate. Note that (9) defines a one-to-one mapping; therefore, Xi may be

formulated using the inverse transformation:

Xi -1
- FXI (Ol(Ul)) (I0)

The inverse CDF's, i.e., FXi-I(. ) are available in closed form for such

distributions as the Weibull and Type I extreme value distributions. Using

(10), the performance function becomes a function of ui.

We next consider the computation of the correlation

coefficients of the transformed variables. Consider two correlated random

variables, denoted as XI and X2. The correlation coefficients OXIX2 can be
computed as

EIXIX 2] - EIXI]EIX 2]

I \OXIX2 °1°2 (11)

Define the transformation from Xi to ui as

xi - Ti(ui) 1:I,2 (12)

and define

H(Ul,U2) = XIX 2 - Tl(Ul)T2(u 2)

Eq. 11 may be expressed as

_XiX2OlO2 -- E[H] -EITI]EIT 2]

Using a series expansion method, it Can be shown that

. 1 12
P[H11 + ? (HI3H31)] + ?_ H22 + H.O.T.

PXlX2OlO 2

(13)

(14)

(IS)
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where higher order terms is denoted (HOT) and where

dIT I dJT 2

u=O

(16)

and where p ts the correlation coefficient of the transformed variables

u 1 and u 2.

An approxlmatlon formula which includes HIj terms up to

I+3=8 has been derlved earlier [2], but was later found to be Insufflclently

accurate for very non-normally distributed functions, such as the uniform

dlstrlbutlon. To Improve the accuracy of p, a more complete formula wlth

up to 12 terms in the series has been derlved and is glven In Table 2.2.

In [2], a procedure was formulated to compute HIj uslng a

numerical method. The procedure was demonstrated by using two examples

Involvlng lognormal and normal variables. It was found that the series

converges rapidly. However, it was not clear how the series would converge If

the random varlables were strongly non-normally dlstrlbuted. In the followlng

example a problem Involvlng a unlformly dlstrlbuted variable Is tested to

provlde information about the rate of convergence of the outlined

procedure. Thls experience Is being used to gulde the Implementatlon of

the procedure Into the NESSUS code.

Consider a case where one (say Xl) of the two random

variables Is normally distributed; then

dX I

= 01 (17)

dnX 1
= 0 for n > 1 (18)

for u 1 = O.
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The approximating series for computing the transformed

normal distribution correlation coefficient, p, may be derived as (up to the

twelfth-order term):

1

°X1X2°2 " o_ [Hli + + H13 + _ H15 + _ H17 +

I 1
H19 + _ HI,ll]

(Ig)

dx2 1 d3x2

" °[d--_2+ _du--_2 + "'1 u2 - 0

where PX is the orlgtnal correlation coefficient.
1X2

Assume that X2 is a unlformally distributed variable with

a density function defined as

f(X 2) = I 0 s X2 < 1

= 0 otherwise

(20)

Using the normalization scheme given in [1], the relationship between X2

and the standardized normal distribution function variable u2 is

X2 " ¢(u 2) (21)

where ®(u2) is the standard normal CDF. Eq. 21 is plotted in Fig. 2.10.

Note that a scale factor has been applied to X2 such that a linear

relationship with a slope of one in Fig. 2.10 represents a standard normal

distribution. Therefore, the uniform distribution, according to Fig. 2.10

behaves in a significantly non-normally distributed fashion for lu21 > I.

Using the numerical algorithm from [I], thirteen sets of

data are obtained as follows in Table 2.3:
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Table 2.3

Results of Equivalent Normalization of Uniform Distribution

set u2 x2

1 -6 .990E-09
2 -5 .287E-06
3 -4 .316E-04
4 -3 .00135
5 -2 .00227
6 -1 .158
7 -0 .5
8 I .841

9 2 .977
lO 3 .9986
II 4 .999968
12 5 .999999713
13 6 .999999999

The next step is to construct a twelfth-order polynomial denoted as

12

X2 = z A u_
n=O n

The required derivatives for computing p are

(22)

dnX2

u2=O

= An • n! (23)

where n = I, 3, 5, 7, 9, and 11.

By solving thirteen simultaneous linear equations, the

coefficients An can be found. Using Eq. 23 and Eq. 19 the approximation

solution is

l

OXlX2 1.36225o[1. - 0.4380 + 0.2235

- 0.0871 + 0.0214 - 0.0024]

(24)
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The ftnal results are as follows

p (Sixth-order) =0.9345 PXlX2

p (Eighth-order) - 1.051PXlX2

p (Tenth-order) - 1.020 PXlX2

p (Twelfth-order) = 1.023 OXlX2

The exact solution for this particular case is available [3] and is

(Zs)

o (Exact) = 1.023 PXlX2 (26)

Eqs. 25 and 26 show that the Taylor's series from {24) converges quite

slowly. It needs to be pointed out that this example is considered to be

an extreme case to test the robustness of the algorithm.

2.1;2.2 FPI Validation Studies

The original FPI (Fast Probablllt_ Integration) code

using an algorithm developed by Wu [4] was modified to become the NESSUS/FPI

code. In [4], the performance of the algorithm is assessed by six examples;

some examples are considered the worst possible cases. The results indicate

that the algorithm Is able to provide accurate or reasonably good point

probability estimates. In all cases, the results are significantly better

than a widely-used FPI method: the first-order reliability analysis [5].

Chang [6] has investigated the performance (accuracy and

efficiency) of the FPI algorithm for computing structural reliability.

Thirteen examples have been used to test the FPI accuracy. Many of the

examples had nonlinear performance functions with non-normal random

variables. The maximum number of random variables in the examples is

twenty. The results indicate that the FPI algorithm provide good probability

estimates. The errors in the point probability estimates are less than or

near 5_ in twelve examples which are typical of mechanical design problems.
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The only exmple whtch results in large error is the same

problem investigated tn Reference [4]. The performance functton of the

exmple is a linear combination of the Identical and independent random

variables. Each variable is cht-square distributed with one degree of

freedom. The distribution is apparently htghly non-non_al. Its density

function has a shape stmJlar to an exponential density function (t.e.,iAexp(-

Ax) where A is a postttve constant )whtch has only one tat1. It seems obvious

that this distribution can not be fitted well by a symmetric bell-shaped

normal curve. This test example indicates that the accuracy of the current

NESSUS/FPI code is llmtted by the normality of the random variables.

However, in probabtltstJc structural analysts, non-normal engineering

variables are commonly modeled using the standard distributions such as the

lognormal and the extreme value distributions. Using the FPI algorithm,

these distributions can usually be fitted very well (in the least-squares

sense) by the three-parameter normal distributions.

The FPI code has also been compared with a code based on

the second order reliability methods [7]. Three examples taken from Chang's

report were tested. The comparison of computed probability estimates suggest

that there are no significant differences in accuracy. The computational

effictencies were also compared by assuming that the computational

efficiency for the first-order reliability analysis should be approximately

equal using the two codes.

The comparison of the computer time seems to confirm

that, at least for linear performance functions, NESSUS/FPI is faster than the

second order reliability methods, especially for a large number of varlables

(in the test examples, the maximum number of random variables, N, Is 20). The

reason is believed to be that the second order methods needs to compute all

the second order derivatives of the performance function In the transformed

"standardized normal (u) space", whereas the NESSUS/FPI algorithm considers

only part of the second order derivatives of the performance function in

the X space. The advantage of using the NESSUS/FPI algorithm is

significant, since the computational effort required by the NESSUS/FPI is

of order N, while that required by the second order methods are of order

N2. Moreover, since it is very inefficient to establish a "complete"

quadratic response function in a typical NESSUS analysis, it seems more

likely that the established response function will be either linear or
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incomplete quadratic. In such cases, the NESSUS1FPI algorithm is

particularly efficient because tt does not requ!re the computation of the

second order derivative.

The NESSUS/FPlalgorlthm has also been used to

demonstrate how to compute the probability of Instability of a dynamic system

[8]. The system is represented by an n-th order ltnear differential

equation. By assuming a solution of the form exp(st), a characteristic

polynomial equation is obtained where the coefficient are random functions of

the random variables. A root s with a positive real part means that exp(st)

becomes unbounded and the system is unstable. A procedure based on the FPI

algorithm is developed and demonstrated using an example involves a slx

degree polynomial with two random variables. For comparison purposes, a

Monte Carlo solution is obtained. The result shows that FPI is accurate

and is far more efficient than the simulation method.

Other NESSUS/FPI validation exercises include the

solution of the NESSUS validation test cases I and 2 in which good agreement

between FPI and Monte Carlo are obtained.

A general conclusion drawn from the results of the

numerous examples Is that the NESSUS/FPI is consistently able to provide

accurate results so long as the expansion point is the most probable point.

When the most probable point can be located (by iteration), good results can

usually be expected even with linear approximation of the performance

function.

2,1,2.3 FPI Accuracy/Improvement Studies

A number of studies on the FPI algorithm were conducted

at the University of Arizona. The studies focused on approximation functions

within NESSUS/FPI which have been suspected of producing errors in the

resulting probability estimates. Modifications to NESSUS/FPI have been made

to improve the performance of the code and include:

I. A new gamma function has been introduced. This function

representation has about eight significant figures for accuracy

and is a significant improvement over the polynomial

approximation previously used.

2. Changes were made in calculations of the extreme value
distribution (EVD) parameters to provide ten-place accuracy.



The polynomial approximation to the inverse nomal CDF has
been replaced by the secant method with a significant
improvement in accuracy.

4. All distribution parameters are now computed at the
beginning of the program tnstead of within the subroutines.

5. The secant method is used to compute the Wetbull shape
parameter. Using this method and the new gamma function should
improve accuracy of both Weibull parameters.

Details of these changes are reported in Appendtx C.

Comparison of the old and new code for NESSUS/FPI showed

small changes tn the results, generally less than S_ for all thirteen test

examples. However, the new code accuracy has been achieved with no

significant loss of efficiency and ts, therefore, being incorporated in the

next release of NESSUS/FPI.

In addition to the above numerical improvements, there

are three new distributions which have been added to NESSUS/FPI. The new

distributions are:

1. The Frechet distribution Type 2 asymptotic distribution of
extreme values from an initial lognormal distribution and, in
general, an initial distribution having a polynomial tail in the
direction of the extreme.

2. Truncated Welbull distribution.

3. Truncated normal distribution.

The truncated distributions are included for modeling distributions of

material axes for the turbine blade verification problem. Other

distributions already in the code are the normal, lognormal, Welbull, Type

I extreme value, maximum entropy, chl-square, and NESSUS. The NESSUS

distribution is a polynomial of a normally distributed variable.

2.1.2.4 Confidence Band Estimation

The basic goal of confidence band estimation, in the

context of the NESSUS analysis, is to quantify the confidence on the

accuracies of the probability estimates for the response functions. The basic

assumption for the methods is that the response functions are derived from the

NESSUS perturbation data base. The approach is to treat the distribution

parameters of the input random variables as random variables, and then

create the CDF of the response function CDF. This strategy Is the essence

39
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of the Beyslan approach to parameter estimation. Four approximation

methods are identified for estimating the confidence (or error) band of the

cumulative distribution function of the response function. The most

suitable one is Identlfled and included in the new version of the

NESSUS/FPI code.

Let Z denote the response variable, and Z(X) denote the

response funct!on where X is a vector of the input independent variables. In

the NESSUS/FPI, Z(X) is a polynomial function:

N N
2

Z- Z(X) = ao + z alX I + z biX I ()7)
I=I I=I

where N is the number of independent random variables. In general, several

polynomial equations may be required to ensure sufficient accuracy of the

function over a wide range of Z. Ideally, one polynomial should be

established for a selected Z value.

The basic assumption in the response function for the

confidence interval estimation is that for a given Z, the best estimate Z(X)

(derived using the best estimates statistics of X) remains valid within the
,p

confidence band. In general, Z(X) is dlfferenttfor different distribution

parameters set because the most probable point, which is used to define

Z(X), Is a function of the distributions. However, the assumption is valid

when Z(X) is actually a first or second degree polynomial. For highly

nonlinear Z(X) function, the assumption is a reasonable one so long as the

variabilities of the significant random variables are not very large.

There are two basic types of uncertainties in a

NESSUS/FPI-generated response function: (I) physical uncertainty and (2) model

uncertainty. Physical uncertainty is the uncertainty associated with physical

phenomena which are inherently random. In the NESSUS analysis, this

uncertainty is accounted for by treating the input variables as random

variables or random fields. Model uncertainty includes parameter uncertainty,

uncertainty in the statistical distribution model, response function model

error, etc. The approach adopted in this study concentrates on the

varlabllitles of the input variables.

Assume that X is a normally distributed random variable

with mean p and standard o deviation. Given a sample, n, the sample mean, X,

is a normal variable with mean and standard deviation of
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requlres major code modification and developement effort. Method 3 is

accurate for large samples, but the full simulation is extremely

inefficient. Method 4 is accurate and is consistent wlth the current

NESSUS/FPI approach, I.e., the CDF of Z(X) is computed by using the FPI

method for a given set of statistical parameters. In terms of the

computatlonal efficiency, Method 4 is inefficient relative to Methods I and

2 but is much faster than Method 3. Overall, Method 4 was considered

accurate with satisfactory efficiency, therefore, it was selected and

has been Incorporated in the NESSUS/FPI code.

An example has been taken from that proposed in Appendix D as a means

to test the confidence band estimation algorithm In the NESSUS/FPI code.

The response function Z is a function of two normal variables X and Y,

Z=X -Y

The statistics are,

For X For Y

n = 20 n = 20

= 1o T =

sX = 2 Sy = 1

The sample means and the sample standard deviations are defined as the best

estimates. Using Eqns. 28 and 29, the COVs for the means of both X and Y

are 0.0447; the COVs for the standard deviations of both X and Y are 0.162.

By entering these parameters Into the NESSUS/FPI, the 90_ and 95_

confidence bands of the CDF of Z were generated. The result is shown in

Fig. 2.11. The Monte Carlo sample size is 5,000.

2.1.2.5 Monte Carlo Methods

Monte Carlo simulation has been usually considered to be a

last resort for solving a major simulation problem because of Its high cost

for accurate results, especially in the tails of the distributions. However,

recent developments of new and efficient algorithms have made Monte Carlo

more attractive.

A study of several Monte Carlo simulation algorithms has

been conducted at the University of Arizona for the PSAM project. Two
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p -. s . olcn (28)
X

The variable (n-l) s2/a 2 has a cht-square distribution with n-! degree of

freedom. If this chi-square distribution is approximated by a lognormal, then

the distribution of swtll be a lognormal. The statistic of s can be

approximated as

us - s %= o// [2(n-1)] (29)

For the NESSUS/FPI confidence band estimation, we assume

that each Xt(t=I,H) is characterized by tts mean and standard deviation. We

further assume that the statistical distribution is normal for the mean, and

is lognormal for the sample standard deviation. These assumptions about the

statistical distributions of the parameters are exact only when X is normal.

The actual distributions usually do not follow available standard

distributions and the COF's cannot be defined in closed forms.

The required input data for the confidence band

estimation are the statistics (the means and the COVs (coefficient of

variation = standard deviation/mean)) for the means and the standard

deviations of all Xt's. Note that the input statistics may be estimated by

using Eqs. 28 and 29 where the actual statistics may be replaced by sample

statistics. However, the statistics may also be estimated using other

statistical methods or engineering Judgement. This input format is more

flexible since tt does not require that the sample sizes be defined_ However,

the input statistics must be prepared before the estimation process.

Four methods are considered:

I. First Order Error Bounds

Assume that Z(X) is linear and each Xi is normally distributed. For

each Z(X), there is a best-estimate most probable point of X. The best

estimate CDF of Xi, denoted as Fi, is determined using the most probable

point for each Xi. At Fi, Xi can be written in terms of the mean and

standard deviation by inverting the CDF,

Xi = oi_-l[Fi] + ui (30)
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where oI and _i are random variables. Upon substltutlon of each XI into Eq.

30, Z(X) can be expressed in terms of Z(_,9).

By further assuming that Z(X) has a normal or a lognormal

distribution, closed formsolutlons for the confidence bounds were derived

by Wlrsching and are included in Appendix D.

2. FPI algorithm

Assume that Z(X) is linear. The CDF of Z(X) = z, In terms of the

standard normal variate, u, can be formulated as

ao + _al_ i

u - 2 2 (31)
/ (zaio i)

where ui and oi are the equivalent normal parameters of Xi based on the

Rackwltz-Fiessler algorithm [g]. Eq. 5 is a safety index formulation

based on the first order reliability method.

Note that the equivalent normal parameters are functions of the CDF,

F(X), the PDF (probability density function), f(X), and the most probable

point Xi. Let

0i : (.i,oi) (32)

Because F(x) and f(x) are functions of _, therefore, u can be expressed as

u = function (B) (33)

The limit state or performance function can be formulated as

g(_B) = u - uo (34)

The following is a proposed FPI iteration algorithm for estimating the CDF of

u for a selected response function value Z - z:

I. Select a uo-

2. Guess the design point of the distribution parameters, e.

3. Compute the equivalent normal parameters of the random
variables, B.



45

4. Define the distributions of X using the most probable point
of e.

5. Guess the most probable point of the basic variable X.

6. Compute equivalent normal parameters for non-normal X.

7. Compute the most probable point of X and the CDF of Z(X) = z

8. Go to step 3; repeat untll the most probable polnt of X or

the CDF of Z(X) is stabilized.

9. Compute the most probable point of e and the CDF of g (e) - 0

10. Go to step 2; repeat until the most probable point of e or
the CDF of g(e)= 0 ts stabilized. ~

Note that the above procedure requires nested iteration loops. Step 3 to

step 8 constitute the inner FPI loop for a selected e set. Steps 2, g and

I0 constitute the outer loop for finding the most likely e set.

3. "Full" Monte Carlo Simulation

This method is conceptually more straight-forward.

following steps:

It requires the

I. Generate samples of B sets, ej, J = I, J

2. For each B, generate a set of Xk, k = I, K

3. Compute, using Xj, the response function value, Zk, k = 1,K

4. For each Bj, compute the CDF of Z(X)=z, denoted as (CDF)j,
J = 1, J

5. Using samples of (CDF), construct CDF of u.

This last procedure is expected to be extremely tlme-consuming because it

requires the generation of "J times K" samples of Z(X) values.

4. Mixed Approach - Combination of Monte Carlo and FPI

This approach combines the above methods (2) and (3). The difference

between thls approach and the previous approach (Method 3) is that after a

set of Xj is generated, the FPI routine is used to compute each (CDF)i.

The methods can now be compared. Method I captures the essence of

statistical uncertainty and is the most efficient. However, the accuracy

of Method I is limited by the distributional assumptions. Further

improvement is needed for this fast algorithm. Method 2 has the potential

to be both fast and accurate, however, it is the most complicated and
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computer programs based on the conventional Monte Carlo algorithm and one

based on variance reduction using anttthettc varlables were vn-ttten at the

University of Arizona. Other efficient Monte Carlo schemes are still betng

evaluated. The work to date is summarized tn Appendix E.

2.1.2.6 Integration with NESSUS/FEM

This section summarizes the study of an FPI iteration

procedure which was intended to be used to Integrate the FPI and the FEM

modules. The procedure was used successfully to solve several selected

problems. At the end period of this study, however, a new and potentially

more efficient method was formulated which seems to be most suitable for

constructing the CDF of a response function. The newly-developed method and

the iteration procedure are summarized in the next section (2.1.2.7). The

procedure described in the present section is useful for computing a point

CDF. For creating the entire CDF, the present procedure may ultimately be

replaced by the new procedure. However, the new procedure is based on the

present study, and many key concepts discussed in this section remain valid

for the new procedure.

The integration of the NESSUS/FPI and the NESSUS/FEM is

based on the concept of successive linear/quadratic approximation algorithm

which was identified in the first year of this project [5]. The goal is to

expand or perturb the performance function about the most probable point.

Note that in the field of structural reliability analysis, where the goal is

to find the probability of failure estimate, the most probable point is called

the "design point". The algorithm which is summarized in the following has

been used to test several examples with success.

The iterative algorithm has been established as follows:

I. Identify critical dependent variable (stress,frequency,...)

2. Select values for dependent variable. (e.g., mean, mean +

I0_ of mean)

3. Using the NESSUS/FEM module, compute the perturbation

solutions about an initial guessing most probable point.
Initially this can be chosen as the mean values. However, a

good initial guess of the most probable point will accelerate

the iteration procedure.

4. Establish linear/quadratic response surface from the

perturbation solutions using the least-squares method.
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5. Compute the most probable point, using the NESSUS/FPI, for
the selected value of dependent variable.

6. Compute the CDF and evaluate accuracy (based on the
successive CDF values or the most probable point values)o

7. Use the hew most probable point and go to step 3, until the
solution converges.

Experience with this algorithm has indicated that the solution can usually

be found in about three iterations.

An example is now presented to Illustrate the above

iteration procedure for integrating FEM with FPI. The example is a simplified

version of the NESSUS validation test case 2 from the first year annual

report. The finite element model Is lllustrated in Fig. 2.12. There were

initially ten random variables: five correlated loadlngs, width, length,

thickness, base spring and modulus of elasticity. By assuming that the width

is deterministic, the "exact" root stress becomes:

S = LP/t 2 (35)

in which P Is a load random variable; L is the l_ngth and t is the

thickness. The mean value of S is approximately 3500 psl.

In order to illustrate more clearly the iteration

procedure, it is assumed further that t is a deterministic variable and L an P

are normally distributed. Note that none of the above assumptions is

required for the NESSUS solution.

Define the "reduced variables" of L and P as

uI = (L - Lmean)/Lstd. dev.

u2 " (P - Pmean)/Pstd. dev.

(36)

Using Eq. 36, L and P can be expressed as functions of uI and u2,

respectively. Substituting L and P into (35), one can plot the contours of

constant stress (iso-stress)in a two dimensional u space as shown in Fig.

2.13. The reason for using the u coordinate system is that the Joint
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probability density function is rotatlonally symmetric. The most probable

point is, therefore, easily identified as the point on a Iso-stresscurve

which is nearest to the origin.

The problem Is defined as follows: Find the most probable point (and

the CDF) for S2 - 4500 psl by starting at S1 - 3500 psi. Fig. 2.13 shows

the result of the ftrst iteration. Initially the ltnear approximation of S

ts based on the mean values of P and L whtch corresponds to the origin. A

"predicted" 1so-stress curve (S 2 = 4500 psl) can be defined using the

mean-derlved linear equation. The predicted S2 curve, which is parallel to

the approximated SI curve, devlates from the exact S2 curve because S is

actually a nonlinear function of P and L. However, this first iteration

leads one to a region close to the exact most probable point. Using the

predicted most probable point as a new expansion point, a second iteration

results in an accurate prediction of the most probable point as shown in

Fig. 2.14. No more iteration is required.

For S2 > 4500 psi, the volume under the Joint probability density

function surface is concentrated near the most probable point. The first

order reliability analysis gives the following result:

P(S > 4500 psi) : +{- B) (37)

where B is the minimum distance defined by the most probable point.

The above procedure can be applied to several values of S in order to

eatablish the entire CDF. In the following, the procedure will be applied

to integrate the FPI and the FEM. The test problem is the NESSUS

validation test case two of which the width is assumed to be deterministic.

The results of the first iterations at three stress levels (2600, 3500 and

5400 psi) are shown in Fig. 2.15.

The purpose of Fig. 2.15 is to show the algorithm for integrating the

NESSUS/FEM and the NESSUS/FPI. The finite element model consists of twenty

plate elements (NESSUS element 75). The difference between the analytical

and the NESSUS solutions is about 3_. In order to show the effect of

successive linear approximation, a "calibrated exact" CDF is used to match

the mean solutions.

The first perturbation was taken about the mean values of the

independent variables. Two more FEM perturbations were taken about S =
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2600 and S = 3500 using the predicted most probable points. It is shown

that the CDF values are accurate "locally" around the approximation

points.

Figure 2.16 shows the result of an analysts for the ttp displacement of

the same cantilever beam. The goal was to compute the CDF at 1.2 inches.

The result of the first iteration indicates a significant improvement at

the region around 1.2 inches.

It should be noted the above results were obtained ustng "small"

perturbations (0.05 or 0.1 standard deviation for the independent random

variables). The reason was to esttmate the first order sensitivities more

efficiently. It is noted also that the update of the most probable points

in the NESSUS/FEM input data deck were done manually. The updated

"correlated" nodal loads were being computed using the most probable point

values of the "uncorrelated" loads (which means that the etgenvectors

generated using the NESSUS/PRE module must be used to update the NESSUS/FEM

data). Thts computational procedure needs to be considered carefully tn

designing the user-friendly expert system - the NESSUS/EXPERT module.

2.1.2.7 A New CDF Estimation Method

This section summarizes a new CDF estimation

method. This method, if proved to be more effective for estimating the CDF of

the response function, will replace the one described in the previous section

(2.1.2.6). However, since the new method was developed in the last period of

the second year PSAM efforts, further detailed study of the method is required

to validate the method. A preliminary discussion on the method is given in

Appendix F where the formulation of the method and a simple example are

included. By using a procedure which corrects the error of the response

function at the most probable point, it is shown that the new procedure has

the potential to significantly improve the NESSUS solution efficiency by

reducing the requirements on the perturbation solutions.

The procedure based on the new method for integrating the

NESSUS/FEM and the NESSUS/FPI modules is as follows:

l. Construct first (can be extended to second) order
approximation of the response function Z(X) about the mean
values. NESSUS/FEM module is used to generate response
function sensitivities or perturbation solutions.

2. The reponse function is established using the least-squares
routine in the NESSUS/FPI.
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3. Using the response function of step 2, a CDF can be
constructed. (This CDF is, in general, not sufficiently

accurate at the tail regions of the distribution.)

4. Select a CDF value from the result of step 3; find the

corresponding "predicted" response value, Zp.

5. At Z - Zp, compute the most probable values of X, Xp, using

the NESSUS/FPI module.

6. Using the NESSUS/FEM, compute the "exact" response function

value, Ze, at the most probable point, Xp. Ze is the

"corrected" value for the selected CDF value defined in step 4.

7. Compare Ze and Zp. If the difference is small (say, less

than 20 %) go to step 3 and select another probability level.

If the difference is large, go to step I and replace the mean

values of X by the Xp values.

The significant difference between the present procedure and the one

presented in the previous section is that the present procedure fixes a CDF

value and looks for the accurate corresponding response function value,

whereas in the previous procedure, a response function value is fixed and

the CDF value is found using an iteration procedure. Thus, the present

procedure relies more on the additional deterministic solutions while the

previous procedure relies heavily on the additional sensitivity analyses.

Since the sensitivity analyses require more computational efforts than the

deterministic analyses, it seems resonable to expect that the new procedure

will be more efficient.

2.1.2.8 NESSUS/FPI Code Validation Studies

A test plan for validating the first year

probabilistic finite element code was included in the First Year Annual Report

(Vol. Ill, Section 4). It consisted of nine validation problems which were

designed to test a variety of capabilities of the NESSUS code. The exact

solutions, in terms of the probability distributions or the probability of

exceedance, have been obtained for the first five validation problems. The

results which are summarized in the following are presented in a format

compatible with the NESSUS/FPI output. "Exact" solutions are obtained using

the Monte Carlo simulation if no closed form solution is available. These

exact solutions are to be compared with the NESSUS solution to validate the

code as well as the solution algorithm (i.e., FPI iteration algorithm).
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The exact solution for the validation problem I was

included in the First Year Annual Report. The,problem addressed Is a

cantilever beam subjected to static loadlngs, Pi(i=1,5) (see Fig. 2.17). The

loadings are correlated random variables. Other random variables include

Young's modulus, length, thickness, width, base spring and yield strength.

The expected output of the NESSUS solution include the CDFs of the maximum

stress and the tip displacement, and the probability that the stress will

exceed the yield strength. The type of finite element used in NESSUS is

beam element g8.

Problem 2 is similar to problem I except that the plate

element is used and the thickness of the beam is reduced. Because of the

reduced thickness, the nodal loads were changed from 20 Ibs to 0.11bs. Figs.

2.18 and 2.19 summarize the results of the CDF of the maximum stress, the CDF

of the tip displacement and the probability that the stress exceeds the yield

strength.

The goal of the validation problem 3 is to validate the

NESSUS eigenvalue solution algorithms. The cantilever beam defined in problem

1 is used again. The response functions tested are the first three bending

frequencies in each lateral direction. The analj_tical solutions for the

frequencies in the X and Z directions modes were used to derive the exact

CDFs. Figure 2.20 and Table 2.4 summarize the results for the X direction;

Fig. 2.21 and Table 2.5 summarize the result for the Z direction.

Validation problems 4 and 5 addressed a rotating beam as

illustrated in Fig. 2.22. The random variables are: mass density, length,

Young's modulus, thickness and width. Problem 4 tests the beam element, and

problem 5 tests the plate element; The response function tested are the

tip axial displacement and the first bending frequency In the Z direction.

The analytical solutions are the same for both problems. In the original

test plan, the beam was fixed at the rotation center. To represent a

turbine blade configuration more closely, the inner radius (measured from

the center of rotation to the "fixed" end of the beam) was defined to be

4.237 inches. Analytical solutions were revised and used to generate exact

solutions using Monte Carlo simulation. Figures 2.23 and 2.24 summarize the

results for the tip displacement and the fundamental bending frequency.

The NESSUS code validation is still in progress, and MARC

will run the NESSUS/FPI code and compare results with these "exact"
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Validation Case

Table 2.4

3 Cantilever Beam (Natural Frequency)
X Dir. (Horizontal)

Median Mean Std.
Ist Mode 508.04 511.4438 59.28826

2nd Mode 3233 3254.661 377.2911

3rd Mode 8905.16 8964.824 1039.232

w(rad/sec) uI u2 w(rad/sec) u2 u3

3OO

315

330.75

347.2875

364.6518
382.8844

402.0286

422.1301

443.2366

465.3984

488.6683

513.1018

538.7568

565.6947
593.9794

623.6784

654.8623

687.6054

721.9857

758.0850

795.9893

835.7887
877.5782

1824.422

1915.643

2011.425

2111.996

2217.596
2328.476

2444.900

-4.56199

-4.13945

-3.71692

-3.29439
-2.87186

-2.44933

-2.02680

-1.60426

-1.18173

-0.75920
-0.33667

0.085857

0.508389

0.930921
1.353453

1.775984

2.198516

2.621048

3.043580

3.466111

3.888643
4.311175

4.733707

-4.95489

-4.53236

-4.10983

-3.68730

-3.26477
-2.84224

-2.41970

2567.145
2695.502
2830.277
2971.791
3120.380
3276.399
3440.219
3612.230
3792.842
3982.484
4181.608
4390,689
4610.223
4840.734
5082.771
5336.910
5603.755
5883.943
6178.140
6487.047
6811.400
7151.970
7509.568
7885.047
8279.299
8693.264
9127.927
9584.324
10063.54
10566.71
11095.05
11649.80
12232.29
12843.91
13486.10
14160.41
14868.43
15611.85

-1.99717
-1.57464
-1.15211
-0.72958
-0.30705
0.115481
0.538013
0.960544
1.383076
1.805608
2.228140
2.650671
3.073203
3.495735
3.918267
4.340798
4.763330

-4.85640
-4.43387
-4.01134
-3.58881
-3.16627
-2.74374
-2.32121
-1.89868
-1.47615
-1.05362
-0.63108
-0.20855
0.213974
0.636505
1.059037
1.481569
1.904101

2.326632

2.749164

3.171696

3.594228

4.016759
4.439291

4.861823



62

mlml-------- m

?,
1,.

11111

m

" i

I
_ 0

1

i

_o I

I I ! I I

(n) uol),oun.-I uoI),nql_),m!CI o^!lolnwno

%.

N

!

÷
v

(U

u
C

.¢.D_
_0

Cm__
OL--_

4.) _
_,¢._

u

x
_&aJ

m_



63

Validation Case

Table 2.5

3 Cantilever Beam (Natural Frequency)

Z Dlr. (Horizontal)

Median Mean Std
1st Node 497.9 501.2359 58.10493
2nd Mode 3168.5 3189.728 369.7639
3rd Mode 8727.4 8785.873 1018.487

w(rad/sec) uI u 2 w(r_dlsec) u2 u3

3OO
315

330.75
347.2875
364.6518
382.8844
402.0286
422.1301
443.2366

465.3984
488.6683
513.1018
538.7568
565.6947
593.9794
623.6784
654.8623
687.6054
712.9857
758.0850
795.9893
835.7887
877.5782
1824.422

1915.643

2011.425

2111.996

2217.596

2328.476

2444.900

2567.145

2695.502

-4.38739
-3.96486
-3.54233
-3.11979
-2.69726
-2.27473
-1,85220
-1,42967
-1.00714
-0.58460
-0,16207
0.260455
0.682986
1.105518

1.528050

1.950582

2.373114

2.795645
3.218177

3.640709

4.063241

4.485772

4.908304
-4.78037
-4.35784
-3.93531
-3.51278
-3.09025
-2.66771
-2.24518
-1.82265
-1.40012

2830.277
2971.791
3120.380
3276.399
3440.219
3612.230
3792.842
3982.484
4181.608
4390.689
4610.223
4840.734
5082.77I
5336.910
5603.755
5883.943
6178.140
6487.047
6811.400
7151.970
7509.568
7885.047
8279.299
8693,264
9127.927
9584.324
10063.54
10566.71
11095.05
11649.80
12232.29
12843.91
13486.10
14160.41
14868.43
15611.85

-0.97759
-0.55506
-0.13252
0.290003
0.712534
1.135066
1.557598
1.980130
2.402661
2.825193
3.247725
3.670257
4.092788
4.515320
4.937852

-4.68178
-4.25925
-3.83672
-3,41419

-2.99166
-2.56912
-2.14659
-1.72406
-1.30153
-0.87900
-0.45647
-0.03393
O. 388592
0.811124
1.233656
1.656187
2.078719
2.501251
2.923783
3.346314
3.768846
4.191378
4.613910
5.036441
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solutions. To date these validation problems have been used to uncover

several program bugs, to gain experiences for incorporating user-friendly

interfaces, and to lead to new solution strategies.

The validation of problem 1 has ratsed an issue regarding

the random variables data input structure. The type of Finite elment used in

this problem ts Ttmoshenko beam element (NESSUS element type 98). The random

variables tnclude thickness, t, and width, w, among others. The first-year

NESSUS code defines the beam section using the area, A, and the area moment

of Inertias IX and ly. This format is not proper because A, Ix and ly are

correlated depending on the shape of the beam sections. Conseqently, the

independent perturbations of w and t are impossible. To correct the

dependency problems requires that the NESSUS/FEM code use "basic variables'

w and t as input data. This strategy can be applied to other problems

involving dependent variables.

Pending implementation of t and w as random variables,

problem 1, with w and t as deterministic values, was used to validate other

capabilities of the code. Modal frequencies, stress and displacement

solutions were obtained and compared well with the analytlcal solutions. The

perturbation solutions were not obtained, however, pending the code

modification of the input structure.

For the validation problem 2, perturbation convergence

instability has been observed for the width, w. In order to obtain a complete

perturbation data base and to accelerate the validation process, w was

temporarily treated as a deterministic value. The valldation study of this

slightly modified problem 2 has resulted in the successful integration of the

NESSUS modules (PRE,FEM and FPI), using a successive linear approximation

algorithm (Section 2.1.2.6). The study of the FPI iteration procedure for

this problem has also led to a new and potentially more efficient solution

strategy forestimatlng CDF (Section 2.1.2.7).

A validation problem not included in the flrst-year plan

is a simple model simulating a turbine blade. The goal is to validate the

capability of the code to treat the material axes as random variables. The

model consists of four solid elements (NESSUS element type 75). The materlal

has anisotropic property with one material axis modeled as a random variable.

Perturbation results for the first two modal frequencies were obtained to

estimate the CDFs using the NESSUS/FPI. Analytical solutions for this test
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case ts not available. However, the validation results were Judged

reasonable based on the information of the resulting means and standard

deviations of the natural frequencies. A data input limitation was

identified in that the material property (O) matrix defined in the FEH

input data is deterministic. That is, the material propertles such _as the

Young's modulus and the Polsson's ratio cannot be defined as random

variables. It appears that code modification is necessary to solve the

problem.

MARC has now completed the perturbation analysis for the

validation problems I, 3 and 5. New CDF estimation procedure {Section

2.1.2.7) will be used to continue the validation of the NESSUS modules and the

solution procedure.

2.1.3 NESSUS/EXPERT Development

2.1.3.1 Approach

The goal of the expert user interface is to provide a

flexible, user-friendly interface to the NESSUS/FEM and NESSUS/FPI codes.

This interface will serve not only as an enhanced, on-line, automated user's

manual for these codes, but it will also act as an expert aid in generating

a data deck for a problem, especially the probablllstic information needed

to solve a problem using NESSUS. Emphasis has been placed on minimizing

the detailed knowledge that a user must have of NESSUS, allowing him/her to

provide the information about a particular problem in as natural a way as

possible and having the the expert user interface generate the actual data

deck required.

To this end, an expert system called NESSUS/EXPERT is

under development in parallel wlth the development of the NESSUS code itself.

The system will consist of two major components, the interface to NESSUS/FEH

and the interface to NESSUS/FPI. The interface to NESSUS/FEM is to contain

essentially all of the knowledge about the use of NESSUS provided In the

user's manual. It will also contain any clarification and other specifics

about the use of the code known to those who developed the code and those who

have tested it. It will also contain knowledge about generating probablllstlc

information about the problem from general descriptions. The interface to

NESSUS/FPI will contain knowledge on how to analyze and interpret the results

of a run, thus aiding the user in deciding what to do next.
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Most such knowledge Is embodied In the form of rules-of-

thumb that provide methods for calculatlng specific values needed by NESSUS

glven general Infonnatlon about the problem, that provlde hlnts about how best

to use the system, and that Indlcate what Is useful and Important In the

output of a run. Thus, the problem flts, in a falrly stralghtforward

manner, the production rule knowledge representation method. Thls Is

convenient slnce most exlstlng expert system bulldlng alds are rule-based

and thls is the best understood method of the AI technologies. Thus, the

approach Is to design and Implement two rule-based expert systems to act as

an intelligent front and back end to the NESSUS code.

2.1.3.2 LISP/OPS5 Environment

The programming language selected for initial

development of NESSUS/EXPERT Is OPS5. OPS5 Is an expert system building

software facility that allows a programmer to write production rules directly

as code. The version of OPS5 being used in NESSUS/EXPERT Is public domain and

available free from Carnegie-Mellon University. It runs under Franz Lisp Unix

on a DEC VAX. SwRI has recently ported this version of OPS5 to DEC Common

Lisp so that it now runs under DEC VMS and on the Sun Workstation under Sun

Common Lisp.

The entire NESSUS/EWPERT system wlli be coded Intlally

using OPS5. The advantage of such a tool Is that It offers a much higher

level of productivity for the programmer because the knowledge can, to some

extent, be encoded directly Into OPS5 code. It also produces a much more

readable and maintainable computer program. Though there are many other more

elaborate, and more expensive, methods and tools for creating expert

systems, the production rule technology embodied In OPS5 Is sufficient for

thls task.

The major drawback of using a tool such as OPS5 for this

application Is its dependence on the Lisp environment. OPS5 is an interpreter

coded in Llsp and, therefore, requires Lisp In order to run. Lisp does not

currently provide an easy interface to FORTRAN on the DEC VAX. Thus, in the

case where a data deck is produced for the pre-processor, the pre-processor

cannot be invoked directly from NESSUS/EXPERT. Instead, the user must

leave NESSUS/EXPERT, run the FORTRAN-based pre-processor, and then return

to NESSUS/EXPERT where the resulting file can be read In and the process of

developing a data deck for NESSUS can continue.
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A Lisp-based system is being used because there are

currently only about three expert system butldlng tools available written In

FORTRAN. Their functionality ts limited and the resulting code ls not all

that readable because oF the Compromises made due to the FORTRAN language. A

solutton to thts problem, as well as the requirement that all code for the

PSAH project be delivered In FORTRAN, Is to retmplement OPS5 tn FORTRAN.

The dependence on the Ltsp environment would be removed and the interface

to FORTRAN would be automatic. Another option would be to recode the

entire NESSUS/EXPERT system In FORTRAN at the compTetton of this project.

This is not desirable because all of the flexibility and maintainability

acquired by using OPS5 will be lost in the translation. Therefore, for the

moment NESSUS/EXPERT will remain In Lisp-based OPS5.

2.1.3.3 NESSUS/FEM Interface

Development of NESSUS/EXPERT has begun wlth the

creation of an expert system for interfacing to NESSUS/FEM. Because the

expert system developed must be an "expert" in how to use NESSUS/FEM, work has

started by incorporating the knowledge contained In the MHOST User's Manual.

Examination of the MHOST User's Manual supplied by MARC Analysis Resesarch

Corporation has revealed a list of various types_of knowledge that must be

used when creating a data file for NESSUS/FEM that will run correctly for a

specific problem. These include:

I. The required information for all problems {i.e., number of

elements, connectivity of the nodes, etc.)

2. Interdependencles of options selected and data provided with

other possible options and data (i.e., the number of elements

provided under the model data must be less than or equal to the

number provided under the parameter data, the *composite option

under parameter data requires the *laminate option under the model
data, etc.)

3. Incompatible selections of optlons/data {i.e., *frontalsolutlon

option cannot be used with the *bandmatrlx option)

4.1 Default options and values {i.e., *bandmatrlx is the system

default option, upper bound to the number of beam element crossings
defaults to I, etc.)

5. All available keywords and their "meanings"

6. Format of the parameters and data expected for each keyword, both

for acquiring the needed information and for setting up the data

file properly
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7. Helpful hints concerning idiosyncrasies of the code (I.e., not
recommended to use the option *stress, not recommended to use the
option *displacement method for Inelastic computations, etC.)

8. Helpful hints concerned with the "best" way to do something (i.e.,
for ltnear elastic analysis Use the option *constitutive to avoid
unnecessary computations, etc.)

g. What information about the problem can be inferred from other
information. All but the last type of knowledge appears in the
user's manual.

Of course, many of the first eight rule-types have been developed from

talking with experts on the NESSUS code because the manual does not always

provide all of the information necessary to run the code. However, tt does

provide an excellent place to start.

The overall design of the user interface maintains in

spirit, anyway, the three step process used by the NESSUS code for developing

a data deck for the FEM processor inputting the parameter data, the model

data, and the incremental data, if needed. Input to the pre-processor is

handled as a separate option tn NESSUS/EXPERT. However, inputting the

parameter data is not done immediately at the start of a session because many

of its values can be inferred from the model data. Thus, the model data Is

input first, the necessary parameter values are determined by NESSUS/EXPERT

and then the user is given a chance to enter whatever other parameter data

he/she deems necessary. Each of the three steps consists of the following

rule-sets:

o Rules to guide the questioning for required informatlon and to
check its correctness

o Rules to handle the optional, keyword Input and to check its
correctness

o Rules to handle a HELP facility

o Rules to output the data to the screen so that the user can verify
the data

o Rules to check the completeness and consistency of the provided
data

o Rules to write the data to a file in the proper format

Each of these groups of rules will constitute a separate

portion of the knowledge base that we wlll refer to as rule-sets. They will
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contatn the varlous types of knowledge discussed in the previous section.

Overall, NESSUS/EXPERT for NESSUS/FEM can currently be

characterized as a menu-drlven consultant. Some input may come from

previously prepared files, while other input can be supplied by the user

Interactlvely at the terminal. The basic tasks accomplished during each of

the major phases in the system are described below. A block diagram of the

system corresPondlng to this description appears in Fig. 2.25.

Io Identify Problem: During this beginning step, the user is asked to

specify the name of the output file to be created and the type of
data deck to be created. This information is then used by
NESSUS/EXPERT to determine what should be done next.

. Define a Preprocessor Data Deck: If the type of data deck to be

created is a pre-processor data deck then the system follows the left

branch of the flow diagram in Fig. 2.25. Currently, NESSUS/EXPERT

is set-up simply so that such information can be entered through a
dialogue guided by the expert system so that everything that is

needed is entered. Each data set must consist of five categories of

information: I) RANDOM, 2) SELECT, 3) POINTS, 4) MEANS, and 5)
DEVIATIONS. NESSUS/EXPERT simply prompts the user to enter all of

this information during the dialogue. The structure for consistency
checking of the data before it is written to the file is available,

but currently no rules have been implemented. Any number of pre-

processor data decks can be created during a given session. At the

end of the session, the data is written to the file specified

initially so that it can then be used by the pre-processor.

. Initial Dialogue: If, during the initial identification dialogue
the user specified that a FEM data deck is to be created, then the

right branch of the system flow diagram given in Fig. 2.25 is
followed. The user is asked to provide some introductory information

and to complete the minimum subset of model data categories which

constitutes a valid data deck. This information is extracted through

an initial dialgue with the user which at the moment is an unvarying
sequence of questions for which the user must supply answers. This

area of the code will eventually need significant expansion from the
AI point-of-view. Currently it only contains a minimum amount of

knowledge that was derived from the MHOST manual. Eventually, it

will include more detailed expert knowledge that wil help to

determine the categories that should be included in this minimal data

set based on some general questioning of the user.

. Input Model Data: Most of the topics for the model data section of

the NESSUS data deck are selected by having the user specify a topic
by number or name from a large list of available topics. These

topics correspond to the keywords used in the NESSUS code. Once a

topic is selected, NESSUS/EXPERT guides the user in inputting the
required information associated with that topic either by hand of

from an existing file. When input is completed, control is returned
to the main model data menu. Respecification and alteration of data
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already provided is possible at all times. Also available Is a help
flle on any of the topics that can be selected. Currently the

knowledge that is contained in this se_ctlon has come mostly from the

user manual for MHOST. However, when ambiguity or inconsistency has
appeared information has been acquired directly from the coders and
testers of MHOST.

Input Random Variable Definitions and Perturbations: If a

probabilistic FEM data deck is being prepared in the NESSUS/EXPERT
session, the user will be asked to provide a set of random variables

and perturbations once he/she has completed the model data section of

the data deck. In overall style, the data entry in this section is

handled in a manner highly consistent with previous sections of

NESSUS/EXPERT. A certain set of keywords are needed, along with

their corresponding piece of data. The system provides guidance in
filling in the values associated wlth the the required keywords

either manually or from a file. First, the definitions are simply

asked for, then input of the perturbation information is guided by a
parameter menu Just like the model data section. As with all other

sections of NESSUS/EXPERT, information can be corrected, deleted, or
respecified at any time. This section currently embodies only the
knowledge provided by Supplement II of the MHOST User's Manual.

However, this section will require much more attention in terms of

providing support to the user in the form of an intelligent aid for
handling probabilistic geometric data in the coming year.

Consistency Checkinq and Validation of the Data Deck: Consistency

checking of the completed data deck is one of the more important

functions of NESSUS/EXPERT for it Is here that much of the expert
knowledge on how NESSUS works would be used to ensure a correct data

deck. The goal of consistency checking is to determine whether the

information in the completed data deck is consistent among all of the

various categories. The rules encoded so far in NESSUS/EXPERT are,
for the most part though sometimes very subtlely, contained in the

MHOST User's Manual. Much of the knowledge has required clarification
from either experts at SwRI or the original coders of the NESSUS

system. When a problem is detected in the information provided in

the data deck, the user is given a number of options for solving it,
depending on the problem itself. Due to the power provided by a tool

such as OPSS, all errors will be detected in a very straightforward

manner and if another inconsistency is created by fixing a problem,

this is detected as well. The knowledge encoded in the system so far

has emphasized compatibility between the parameter and model data,
between the BFGS and ITERATIONS data, between the CONSTITUTIVE and

the WORKHARD data, between the random variable data for a particular
topic of the model data and that model data topic, between the

perturbation and random variable data, and within the WORKHARD data

itself. This section will continue to be expanded for the duration

of the project as thls is where much of the intelligence of the
NESSUS/EXPERT will reside.

Output Data Deck: Once the data deck has been completed and verified

as being consistent (to the extent that is currently possible by

NESSUS/EXPERT), the data deck is printed out to a file. It is done



in the following order: 1) the header records and deck title card,

2) the parameter data section, 3) the model data section, 4) the

random variable section (if needed), and S) the perturbations (if
needed). The various sections are printed out in a suitable order

(alphabetically or numerically as appropriate). This output goes to
the file specified at the beginning of the session. Most of the
basic structure of NESSUS/EXPERT exists now. What is left to do in

many cases is to flll in the knowledge bases so that the coverage of
NESSUS/EXPERT is complete. Other major additions left to be done are

addressed in Section 3.1.3, Current Efforts on NESSUS/EXPERT.

2.1.3.4 Rule Structure

A production rule encodes knowledge about a problem in the

form of IF-THEN statements also known as conditlon/actlon pairs. These

production rules manipulate a set of data structures called objects. There

can be an arbitrary number of these objects and each has associated with it a

set of attributes and potential values for those attributes.

The generic form of an OPS5 production rule looks like
J

the following:

(p ex-rule (object1 attribute1 valuel attrlbute2 nil) (obJect2

attribute3 <> value3) --> (make object4 attribute4 value4)

(modify 1 attribute2 value2) )

The letter "p" just inside the left parenthesis indicates

the beginning of the production rule. The rule's name is "ex-rule". This

allows the system to distinguish it uniquely from all other rules in the

knoweldge base. The rest of the rule that occurs before the symbol "-->"

is called the left-hand-side (LHS) of the rule. It contains two

conditions. The first is that there exist an obJectl wlth an attrlbutel of

value valuel and an attribute2 with no value. The second is that there

exist an object2 whose value for attrlbute3 is not equal to value3. The

portion of the rule following the "-->" symbol is called the

right-hand-slde (RHS) of the rule. It contains two actions. The first

creates a new object, called object4 with attribute4 of value value4. The

second modifies the first object listed in the LHS of the rule (object1) so

that its attribute2 has value value2. Thus, if this rule were to become

true, it would result in modifying the world of objects and attributes in

that specified way.

In OPS5 such rules are used during processing by a

7G
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tecIhnlque called forward chaining. Thls means that the rules are data-

drlwen. Data In the world (i.e., the objects and their attributes) change.

Suc}h changes cause some of the LHS's of the rules In the knowledge base to

beoeme true. One rule from thls set of true rules is selected through a

method called "conflict resolution" as the appropriate rule to activate, or

flrm. Firing causes the actions on the RHS of the rule to be performed

re_Itlng In changes to the data In the world making a different set of

pro_uctlon rules In the knowledge base true. This process of forward chaining

continues until information Is needed from the user or no more production

rules can become true. If information Is needed from the user, then this new

Infmrmatlon can modify the data in the world, thus resulting in continuing

thechalning process. If no more rules are true, then processing stops.

One can represent fairly directly In OPS5 the knowledge

needed for NESSUS/EXPERT, such as information concerning a certain piece of

para_eter data for NESSUS. For example, the object could simply be called

par_mmeter-data. Its attributes could include its name, Its parameter-value

names, and related model data names. The parameter data name's value could

be ELEMENTS, its first parameter-value (element t_pe) could be 7, and the

reTated model data names would include ELEMENTS. A rule could then be

de_1_ed that, based on the fact that the parameter data's name is ELEMENTS

an_ its first parameter value is 7, can determine which pieces of model

data are needed to run the problem correctly. The rule might look

something like the following when converted into English: "IF there is an

object called parameter-data, whose name is ELEMENTS and whose first

part,meter-value is 7, THEN the model data whose name is ELEMENT is also

needed. Thls is a fairly obvious and simple rule, but they can become very

o_lex, depending on what knowledge must be represented. The result of

tbfs rule is that if parameter data called ELEMENT exists In the data deck,

them the corresponding model data called ELEMENT must also exist. Thls Is

a_limple example ofhow consistency checking of the data deck can be done

usl_ OPS5 rules.

2.1.4 Verification Studies

2.1.4.1 Objectives of Verification Efforts

The basic objective of the verification effort Is to

apply the methods developed and implemented in NESSUS family of computer

programs to the analysis of actual space propulsion system components. The
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typical components to which the methods w111 be applied include a turbine

blade, a high pressure duct, a lox post and a transfer tube duct liner. The

verification efforts would cover a wtde range of analysts options developed

and Implemented tn NESSUS codes.

The knowledge gained in the verification efforts wtll be

Implemented in NESSUS expert system. The verification effort is broadly

divided into simple verification and complex component verification

analysts. Since NESSUS is in a state of continuous development during the

contract, the simple verification studies are designed to meet the following

objectives.

The simple verification models exercise the element

types, the typical random variables, the range of perturbation of each random

variable and various solution strategies for a particular component but on a

simplistic model. These studies differ from validation studies by the fact

that they are specifically targeted for each component analysis.

The results of the simple verification studies aid in

establishing confidence in the code, identify its limitations in user

interface, as well as analysis capabilities when applled to analysis of

practical components. They also result in correcting element deflciencies and

devise solution strategies that will be effective when analyzing full scale

verification problems. The full scale verification problems on the other

hand, if possible, are conducted on existing production finite element models

and are typically expected to be much more computationally intensive requiring

large main frame computing facility.

2.1.4.2 Scope of Verification Efforts

The space propulsion system components are subjected to

environments with many random variables. Due to the difficulties in the

instrumentation of high energy, high pressure and temperature systems, many

variables are not well-characterlzed. Nevertheless, many components are

subjected to severe environments. The current design philosophy is to analyze

and design the components based on worst conditions using state-of-the-art

deterministic analysis methods. The environments and conditions under which

many space propulsion system components operate lead to structural analysis in

the non-linear analysis domain. These structural analysis non-linearities can

be due to material property or due to geometric changes or due to contact

boundary conditions. Detailed discussion of the environments and
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deterministic analysis techniques to which some typical space propulsion

system components such as turbine blades, fox posts, transfer tubes, high

pressure ducts, nozzle feed lines, and main combustion chamber walls are

subjected to were described in detail in the first year report.

The composite loads spectra contract and probablllstic

structural analysis contract are bold and challenging attempts to extend

advanced deterministic structural analysis methodologies into probablllstlc

structural analysis domain. Developments under the PSAM contract are

implemented incrementally into the NESSU$ program during the five year .

contract period with increasing levels of analysis sophistication each year.

Due to scheduling constraints, all analysis options available in NE$SUS can

not be applied to every component. Thus, a strategy has been developed in

which the component, the type of structural analysis, random variables and the

area of emphasis are chosen to be consistent with code development. This has

been achieved in a probabllistlc structural analysis domain for each component

consistent with primary deterministic analysis requirement for each

component. The scope of the verification studies achieves these objectives

for each component in the order listed below:

1. Turbine blade

2. High pressure discharge duct

3. Lox post

4. Transfer duct

2.1.4.3 Turbine Blade Component Random Varlables

The high pressure fuel pump turbine blade has been c!_osen

as the first component to be analyzed by NESSUS finite element code. The

analysis options and random variables chosen are consistent with the state of

program development. The random variables that will be exercised on turbine

blade analysis are:

I. Material property variations and orientations.

2. Geometry changes.

3. Centrifugal loads.

4. Pressure loads.
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5. Temperature loads.

The strategy of the treatment of the random variables are first presented

followed by the results of the simple verification studies.

2,1.4.4 Material Property Variations

The most commonly used turbine blade materials are

nlckel-based super alloys. Directionally solidified Mar-M-246 (Hf) is used In

space shuttle main engine high pressure turbopump turbines. The single

crystal PW1480 material Is being evaluated for future use In the engine.

These materials are anlsotropic in nature and exhibit strong directlonally

oriented properties. As an example, for the PW1480 material at room

temperature, the elastic modulus in the 111 plane can be as much as 250%

greater than the modulus in 001 plane (Fig. 2.26). Thus, any perturbation of

material orientation affects the blade stiffness and thereby its static and

dynamic response. The material orientation angle is one of the random

variables chosen in probabilistic structural analysis of turbine blades.

Treatment of material orientation angle in single crystal blades is easier

when compared to Directlonally Solidified (DS) material blades. This is

because the DS blade material typically contain a random number of crystals in

each blade, (usually from 3 to 10), the volume of which Can be random, with

each crystal having its own material axis orientations. The single crystal

materials, on the other hand, contain only one crystal but the orientation

angles can vary slightly along the length of the blade based on crystal growth

direction.

A typical statistical data of the distribution of the

primary material axis orientation to the stacking axis from a set of hundred

blades as measured at the base of firtree Is shown in Fig. 2.27. Statistical

analysis of data indicates a normal cumulative distribution provides a

reasonable good fit of data. However, since blades having a cone angle of

greater than 10 ° are rejected, the cumulative distribution function for the

accepted blades is a truncated one modified as shown in Fig. 2.27.

Perturbation of material orientation angles is achieved

in NESSUS by designating the orientation angles as a random variable. The

studies of the perturbation of material orientation angles and the behavior of

the numerical algorithm Is discussed later in the section.

The other factor that might be considered in the material

property variations is the scatter in elastic constants themselves from
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specimen to specimen at a given temperature. In general, insufficient amount

of elastic properties data points exist at each temperature to do a good

statistical analysis to accurately characterize the variations. However, this

variation for elastlc constants at a given temperature is small. A typical

set of elastic constants for wide range of temperatures for PW1480 material is

shown in Table 2.6.

Table 2.6

Elastic Constants for PW1480 Material as a Function of Temperature

-400°F 70OF 1400OF 2000OF

E 19.96E6 IB.38E6 14.75E6 11.0E6

G 20.50E6 18.63B6 15.27B6 12.82E6

n 0.376 0.386 0.395 0.416

The material property for anlsotropic material is currently input to the code

explicitly by specifying completing the mater ial_D matrix (s=De). However,

for PW14BO material in the principal material orientations, a set elastic

constants that can completely characterize the elastic response can be

specified by E, n, and G. Thus, new features will be added to the code for

specifying these constants (instead of the full D-matrlx) and perturbations of

them to calculate the response due to material property variations. The

option of perturbing each coefficient of the full D-matrix is postponed to

later releases of the code. The issue of building in rules in the NESSUS

expert system to avoid material property perturbations that violate the laws

of physics such as non-posltive definiteness of the matrix will be addressed.

2.1.4.5 Geometry Changes

Because of the criticality of the component, every

turbine blade that is used in an engine is subjected to quality inspection

procedure for adherence to the design geometry. The blades that are used in

space propulsion systems are typically short and compact, 0.5" to 3.0" in

length when compared to turbine blades used in air breathing engines. The

specified tolerance is a function of the manufacturing method. For cast

blades, the tolerances are usually of the order of 0.005". Many turbine

blades, including the kind used in the Space Shuttle Main Engine, are of cast
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type with machined flrtree which forms the mechanical attachment to the
disk. The measuredgeometrical variations found in these blades generally

fall in the category of relative twist of the blade (Fig. 2.28) and lateral

shift of the profile within the tolerance envelope. This is presented in the

form of center of gravity shift (x, y, coordinates) for a set of about seventy

blades (Fig. 2.29). An analysis of the measured data indicates that a

majority of geometrical variations from blade to blade occur when the firtrees

are machined. The net effect of geometric variations introduced in this

machining step is a rigid body shift of the airfoil, shank and platform

relative to the stacking axis which runs at the center of firtree. Thus, the

strategy that will be adopted for the perturbation of geometrical quantities

for turbine blades will be the perturbation of nodel coordinates of the finite

element model resulting from rigid body rotation about x, y and z axes

rotations.

2.1.4.6 Centrifugal Load Variations

Centrifugal load is one of the primary loads on turbine

blades. It contributes to a major share towards the mean stress level and

thus plays a critical role in fatigue life calculations. The centrifugal load

varies as the square of the turbine speed. The speed profile of high pressure

fuel turbopump in SSME is shown in Fig. 2.30 which closely follows the engine

thrust profile. An expanded trace of measured speed between 32000 to 36000

rpm from a pump signature test is shown in Fig. 2.31. Here, the power level

was reduced I% per three seconds of test.

Random speed oscillations can be seen about a mean from

this data. Detailed study of test to test varlations furnishes a good

statistical database for this data. It is a level I type of probabilistic

loading in that randomness of centrifugal load is spacially homogeneous for

the finite element model. The engine balance models indicate that 2s speed

variations at steady state power level for the $$ME fuel pump is about 400 rpm

out of 36600 rpm assuming a normal distribution. It is planned to use the

actual processed test data from engine tests for the probabilistlc structural

analysis. The benefit of the results from the composite load spectra

development contract will be utilized for all loads subject to their

availability.
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2.1.4.7 Steady-State Pressure Loads

The steady state pressure loads on turbine blades is a

function of flow conditions at inlet and outlet of the turbine. Detailed

measurements of turbine blade surface pressures and temperatures from actual

engine tests are unavailable. There are a number of measurements such as

preburner chamber pressure, downstream turbine discharge pressure and

temperature (downstream of turnaround duct) and pump head raise

measurements. There are a few measurements from instrumented turbopumps for

temperature in the stators (nozzles) upstream of turbine blades. Thus, the

fluctuation of static differential pressure on the turbine blade between

pressure and suction faces will be a calculated quantity obtained from

indirect measurements and theoretical engine models.

The type of stochastic modeling of pressure load on a

turbine blade is closely related to the design features of the turbine. For

the chosen hlgh pressure fuel turbopump component, the design features are

illustrated In Fig. 2.32. A notable feature is that this turbine has a

secondary flow circuit for cooling the rotating hardware and includes cooling

of the shank portion of the turbine blades...This cooling circuit affects the

pressure in shank portion of the turbine blade. Thus, the pressure load on

turbine blade will be treated as a random field, Level II type modeling. It

is planned that the statistics of the differential pressure variation for the

airfoil will be correlated through turbine torque variation. The shank

pressure variations will be correlated to coolant pressure variations.

Typically, the pressure information will be available at

three or four streamlines or cross sections which will be independent of the

particular finite element model. The pressure at model node locations for a

particular model will then have to be obtained through interpolator codes.

2.1.4.8 Blade Temperature Loads

The temperature loads plays a critical role in turbine

blade analysis. For space propulsion systems-of LOX/LH2 systems with staged

combustion process, the range of temperatures can be very high in a duty

cycle. For example, in SSME during one mission duty cycle, the blades will be

a temperature range from 2200/R to 200/R. While it is virtually impossible

to measure turbine blade temperatures in an actual engine, first stage stator

(nozzle) temperature data from a few instrumented turbopumps is available.

While temperature transients cause the worst case stresses when compared to
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steady-state, the initial scope of the probablllstlc structural analysis of

turbine blade will be limited to steady-state loads. For this reason, the

discussion is limited to solution strategies for the treatment of

probabilistlc temperature loads at steady-state.

Just as in the pressure case, the characteristics of the

temperature random variable is closely related to the design features of the

turbopump, For a hlg_ pressure fuel turbopump, the coolant flows around the

shank, in actuality, the Coolant and hot gas flows around the shank are very

complicated. The hardware shows large variations in oxidation discoloration

(which is a rough indication of temperature) from pump to pump, indicating

that as the various seals wear they affect the flow circuit resistances and

thereby temperature in the shank region. Thus, the developed probabilistic

structural analysis methodology should be able to handle large local

perturbations in temperature. On the other hand, the airfoil temperatures at

steady state is essentially the hot gas temperature. Typically the shank area

has a large thermal gradient when compared to the airfoil as shown in Fig.

2.33 and Fig. 2.34. The platform of the turbine blade itself is nearly

isothermal at steady-state. Thus for the probabllistic structural analysis of

HPFTP turbine blade, the temperature will be treated as a random field with

varying statistical characteristics in airfoil, platform and shank. Thus,

stochastic modeling of temperature is a Level II type modeling.

2.1.4.9 Deterministic Verification Solutions

Simple models, Fig. 2.35 through Fig. 2.37 comprised only

of solid elements were exercised in NESSUS/FEM to understand and verify the

performance of basic solid element as implemented in NESSUS. Several random

variables were also exercised with typical range of perturbations that will be

used in component verification studies. First, the deterministic results

obtained from NESSUS are discussed, followed by perturbation analysis

results. All the exercises were conducted on an anlsotroplc beam

representative of PW1480 material properties at room temperature.

Considering centrifugal load first, model shown in Fig.

2.35 was exercised for both with one of the model axis as the axis of rotation

as well as off axis rotation for hinged condition. The program results

exactly match the theoretical calculated radial loads.
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Considering the pressure loads next, the models in Fig.

Z.35 - Fig. Z.37 were exercised for unifo_ly distributed pressure load and

constant moment condition. The results of the uniformly distributed pressure

load is presented in Table 2.7.

Table Z.7

Uniform Pressure Loading Results Cantilever Beam
FEN Results/Theory Ratio

Tip Deflection

Fixed End Stresses

Simple Beam
Theor_ _ Model A Model B Model C

1.0 0.69 0.74 0.877

1.0 0.51 0.66 0.867

The basic solid elements as implemented currently in

NESSUS is a strict eight-noded isoparametric element. It is known that these

elements are stiff when they encounter pure bending situations and require a

fine mesh to obtain good results. There are several approaches possible to

improve the performance of this element. One of the well-known approaches is

the introduction of additional modes such as (I-r2), (1-sZ), (l-t2) for the 8-

noded brick elements. While the introduction of these functions improves the

performance dramatically for pure bending cases, they also violate

compatibility and do not pass the patch test for arbitrary shaped

quadrilaterals. Further, the performance deteriorates for arbitrary

quadrilaterals. The problem of the patch test failure was subsequently cured

by evaluating the contribution of the incompatible modes to the Jocoblan

matrix at the centroid. It has been found that the resulting element gives

superior performance to the original incompatible element.

The other approach to make the element flexible is

through the use of reduced integration quadrature. The two concepts that are

used are fully or uniformly reduced quadrature and selective reduced

integration quadrature. Recent studies demonstrating the equivalence of a

class of mixed models with reduced/selectlve integrated elements in linear

elasticity has elevated the reduced integration approach from "tricks" to
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legtttmte Bethodology. However, the Important considerations In the use of

the methods are the insufficient rank of the matrix Jn the fully reduced

method and the extenslon of the methodology to anJsotroplc cases Jn selective

reduced method. The fully reduced quadrature Js available In NESSUS without

the hour-glass control. The fully reduced quadrature results Jn spurious

modes, and therefore must be used wJthcautton. For statJc analysis,

computations ustng fu]]y reduced Integration scheme may be possJb]e depending

upon the boundary condtt|ons providing stab|]tty to the problem. However, for

transient dynamic analysts, hour-g]ass viscosity contro] to suppress the

spurious modes ts a necessity to obtatn accurate results.

One of the principal deficiencies of the selective

|ntegratton procedure or recently the B approach as norma]]y Implemented ts

that ft _s lfmfted to fsotropfc case. For turbfne blade app]fcatfons, the

matertal ts antsotroptc and the D-matrtx ts fully populated for genera]

material orientation. The use of standard selective reduced Integration

schemes to an_sotrop|c cases _s ambiguous. Thus, tt ts desirable to Implement

extensions to se]ecttve lntegrat|on schemes or to the B approach tn the

context oF d|sp]acement formulation to cover antsotroplc cases. The

addJtJona] benefit of such a procedure wou]d be tts extension to non]Jnear

problems where tangent modu111 always exhtbtt anlsotroptc character. Several

temperature gradtent solutions were also conducted on models Ftg. 2.35 through

Fig. Z.37 for the antsotroplc matertal element. One of the notable features

of the PW1480 materta] Is that whtle tts elast|c properties exhtbtt strong

dtrect_ona]ly dependent properties, the coeff|ctent oF thermal expansion ts

nearly lsot_op_c. The resu]ts of the temperature solution are presented Jn

Table 2.8.
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Table 2.8

Temperature Gradient Solution 1000 ° Through Thickness

Tip Deflection
(ratios)

Stress

(absolute

values)

Simple Beam
Theory Model A Model B Model C

1.0 I.17 1.02 I.12

0 128000 68000 33786

The maximum perturbations from 001 to 111 and vice-versa,

were tested to check the convergence characteristics under maximum elastic

property changes resulting from material orientation., In practice, material

orientations are not allowed to differ more than ±10 ° from the primary

direction. Thus, the Newton-Raphson method is expected to be adequate for

material orientation perturbations for component verification. The same

strategy should also be adequatefor material property variations also as they

are typically very small for single crystal blades.

Perturbation studies on geometrical changes are next

addressed. The rigid body rotation about the base of the cantilever type

geometric variations found in SSME turbine blades were earlier discussed. The

greatest effect of this type of variation is in the contribution due the

centrifugal load to the stresses due to change in the center of mass

location. Two studies were conducted on the Model A ( Fig. 2.35) where the

geometrical perturbations were 1 degree and 10 degree rotational shift about

the base of the rotating beam. for I degree perturbation, the default Newton-

Raphson method converges for normal engineerlngllmlt of acceptable residual

load errors, however, when the residual load vector is tightened to the order

of 1E-5 of the total centrifugal load, the Newton-Raphson technique exhibits

convergence and then divergence characteristics. However, when sealant

iteration option is used, the algorithm exhibits uniform convergence and
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converges to the tight tolerances (IE-5 of the total load) in three

iterations, in actual turbine blades, variations of less than I degree tilt

are expected. Thus, the available solution strategy appears adequate to

handle geometric perturbations.

Due to the convergence behavior of Newton-Raphson

technique for i degree perturbation, another case with a I0 degree

perturbation was run. This case, the Newton-Raphson technique diverges from

the start. The results are stlll under study. One fo the features of the

test problem is the state of stress and centrifugal load in body fixed

reference frame do not change due to perturbation. However, the global

location of the body Is different when measured from determinate reference

frame after perturbation. The question of how large a perturbation the

implemented solution strategies can tolerate wlll be studied further.

At the current state of development, NESSUS/FEM is

applicable for linear analysis only. Thus, the perturbation of loads such as

centrifugal and ressure loads amount to resolving the linear problem for a new

load case with the old stiffness matrix. Irrespective of the magnitude of the

perturbation of centrifugal and pressures, solutions converged In test cases

in two iterations using Newton-Raphson method. Perturbation of loads and

convergence have a greater bearing in the nonlinear analysis. The simple

verification studies will continue to improve element and algorithm

performances under a variety of conditions. Some of the improvements under

development from the verification studies are described In the current efforts

chapter of NESSUS/FEM. The results of the study will be used in component

verification analysis of the turbine blade.

2.1.4.10 Perturbation Verification Studies

Perturbation verification studies were conducted on the

model shown in Fig. 2.35. The random variables exercised to date include:

!

1. Material orientation angle

2. Nodel coordinates

3. Pressure

4. Centrifugal Load
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The perturbation algorithm relies on established

predlctor-corrector methods used in nonlinear finite element analysis. There

is no one iterative method that exists that exhibit ideal convergence

characteristics as well as be cost effective in all sltuatlons. The solution

strategy to be used is a function of the type of nonlinearity at hand. The

methods that have been developed for nonlinear finite element analysis include

full Newton, Quasi Newton, and Newton Raphson techniques. All the above

techniques are available in NESSUS at a global level common to all

perturbations within a run.

The logic for choosing the solution strategy should

primarily depend on the rate of convergence and cost of the solution. A

necessary condition for convergence for all the iterative methods is the exact

calculation of residual load vector at each iteration. They all differ in the

evaluation of predictor, the trial stiffness matrix used. In full Newton, the

tangent stiffness is evaluated at every iteration. In the modified Newton-

Raphson, the original stiffness matrix or the matrix at the start of the

increment is used. In Quasi-Newton methods, the stiffness matrix is updated,

but numerical strategies are used to reduce the amount of computations (update

of stiffness matrix without inversion) than it would be if a full Newton

method (requiring a full matrix inverslon) was used. The Initlal exercises in

the perturbation examples use the default Newton-Raphson method in the code.

Other solution strategies were used only when divergence was encountered while

using Newton-Raphson method.

The material angle perturbations are first addressed.

The model (Fig. 2.35) was exercised for material axis variations in the

presence of pure axial load. The objective of the studies were to test the

convergence characteristics. One of the considerations was the study of the

performance of the default Newton-Raphson method under perturbations that

stiffen the structure. Thls can happen in turbine blade analysis when

material orientation variations can result in a stiffer blade In the primary

rldial direction.

The study exercised the model in Fig. 2.34 with

perturbations about the deterministic state resulting in stiffer or softer

structure with varying magnitude. The results are summarized in Table 2.9.
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Table z.g

Material Orientation Angle Perturbation
Axial Load Results

Deterministic

State
Amount of Perturbation

About Deterministic State Convergence

No. of Iterations
for Resldual Load

Envlronment

of Applied Load
I 0.1 0.01

001 + 10° yes 4 8

001 To match 111 plane no - -

(36 ° + 45 °)

111 + 10° yes 2 3

111 To match 001 plane no - -

(36 ° + 45 °)

16

7

m

The maximum perturbations from 001 to 111 and vlce-versa,

were tested to check the convergence characteristics under maximum elastic

property changes resulting from material orientation. In practice, material

orientations are not allowed to differ more than +10 ° from the primary

direction. Thus, the Newton-Raphson method is expected to be adequate for

material orientation perturbations for component verification. The same

strategy should also be adequate for material property variations also as they

are typically very small for single crystal blades.

Perturbation studies on geometrical changes are next

addressed. The rigid body rotation about the base of the cantilever type

geometric variations found in SSME turbine blades were earlier discussed. The

greatest effect of this type of variation is in the contribution due the

centrifugal load to the stresses due to change in the center of mass

location. Two studies were conducted on the Model A (Fig. 2.34) where the

geometrical perturbations were 1 degree and 10 degree rotational shift about

the base of the rotating beam. For I degree perturbation, the default Newton-

Raphson method converges for normal engineering limit of acceptable residual

load errors. However, when the residual load vector is tightened to the order
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of IE-5 of the total centrifugal load, the Newton-Raphson technique exhibits

convergence and then divergence characteristics. However, when sealant

iteration option is used, the algorithm exhibits uniform convergence and

converges to the tight tolerances (IE-5 of the total load) in three

iterations. In actual turbine blades, variations of less than i degree tilt

are expected. Thus, the available solution strategy appears adequate to

handlegeometrlc perturbations.

Due to the convergence behavior of Newton-Raphson

technique for 1 degree perturbation, another case with a 10 degree

perturbation was run. This case, the Newton-Raphson technique diverges from

the start. The results are still under study. One of the features of the

test problem is the state of stress and centrifugal load in body fixed

reference frame do not change due to perturbation. However, the global

location of the body Is different when measured from determinate reference

frame after perturbation. The question of how large a perturbation the

implemented solution strategies can tolerate wlll be studies further.

At the current state of development, NESSUS/FEM is

applicable for linear analysis only. Thus, the perturbation of loads such as

centrifugal and pressure loads amount to resolving the linear problem for a

new load case with the old stiffness matrix. Irrespective of the magnitude of

the perturbation of centrifugal and pressures, solutions converged In test

cases in two iterations using Newton-Raphson method. Perturbation of loads

and convergence have a greater bearing in the nonlinear analysis. The simple

verification studies will continue to improve element and algorithm

performances under a variety of conditions. Some of the improvements under

development from the verification studies are described in the current

elements chapter of NESSUS/FEM. The results of the study will be used in

component verification analysis of the turbine blade.
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3.0 CURRENT EFFORT

3.1 NESSUS/FEM

Two different approaches have been proposed for the extension of the

NESSUS perturbation algorithms to inelastic problems. The first approach

calls for continufng the development wlthln the displacement formulation

used in the ftrst year PFEM effort. Extension of the displacement formulation

to Inelastic analysis tn NESSUS/FEM will require a major reorganization of the

tnternal data structures wtthtn the code. The second approach calls for the

adoptton of a mixed tterattve formulation, whtch would preserve the tnternal

data structure of the present code. The development and implementation of

appropriate perturbation algorithms for inelastic analysts will be started as

soon as a dectston ts reached regarding the ftntte element formulation adopted

for future PFEM development.

The development of a flntte deformation kinematics algorithm for

NESSUS is currently well underway. The adopted formulation utilizes an

updated Lagrangian mesh description, with a constitutive relation based on

the Green-Naghdi rate of Cauchy stress and rate of deformation. Although

the development of nonlinear displacement and strain modeling capability ts

not required in NESSUS/FEM until FY88, MARC has taken advantage of the

development of a similar capability for the HHOST code. The ftntte

deformation algorithms being developed for the HHOST code will be added to

the main development version of NESSUS/FEM in a very near future.

An enhanced continuum-based plate/shell element with surface node

definition ts currently under development at MARC. This element is

envisioned as an eight-node brick with assumed strain modes based on the

exact bending solution for an elastic tsotroptc material. The approach is

expected to result in a non-locking element wtth enhanced bending behavior

which can be distorted to a high aspect ratto (h/L _ 1/10) tn order to

mode] moderately thick plate and shell-like structures. An early version

of this element for use in linear elastostattcs should be available in time

for the 2/1/87 code delivery.

A revised format to allow specification of surface pressures and edge

tractions on a nodal basls will be developed and tested. Changes will be

implemented to allow the degeneration of continuum-type elements to form

trtang!es, wedges and tetrahedra. This will require changes to the stratn
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smoothing procedure available in NESSUS 1.1. The new smoothing procedure

will then be tested for robustness. J

The test cases proposed in the preliminary plan for validation of the

NESSUS code are being exercised at MARC. In addition , MARC is in the

process of comptllng a standard list of test problems that will be used to

exercise all versions of NESSUS shipped from MARC. These problems range In

size and complexity from small One element tests_o irregular element _

meshes of a few hundred degreeS,of-freedom.

3.2 NESSUS/FPI

Testing of the new CDF estimation procedure (Section 2.1.2.7) and

the validation of the NESSUS code is in progress. The exact solutions of the

validation test problems have been obtained for the first five problems

(Section 2.1.2.8). Solutions for the remaining problems will be obtained in

the current year. These solutions will be used to compare results generated

from the NESSUS/FPI. By using the perturbation data base generated by MARC

(perturbation solutions are now available for the validation problems 1, 3 and

5), the new CDF estimation procedure will be used to continue the validation

of the NESSUS modules and the solution procedure. The solutions will require

additional runs of the deterministic FEM solutions and, if necessary,

additional perturbations.

Effort in integrating the NESSUS/FPI with the NESSUS/PRE, NESSUS/FEM and

NESSUS/EXPERT is in progress. The basic structure of the expert system code

NESSUS/EXPERT is in place and operational. The emphasis during the next year

will be to make the code easier to use by the engineer.

One of the difficulties identified in conducting probabilistic structural

analysis on systems with a large number of random variables is developing a

method of efficiently entering the random variables Into the computer. For

the analysts to enter a separate probabilistlc data base would be time

consuming and error prone. The approach being pursued Is to use the existing

data base for the structural model along with the NESSUS/EXPERT to query the

user as to which variables are random. Distributional information and the

degree of correlation will also be provided at thls time. With this

information, NESSUS/EXPERT can generate an input file for the FORTRAN code

NESSUS/PRE.

The user will now have to exit NESSUS/EXPERT to run NESSUS/PRE.

However, prior to exiting, NESSUS/EXPERT will save a data file of the
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model and the random variables. NESSUS/PRE transforms a set of

correlated random varlables to a set of uncorrelated random varlables

using the elgenvector transformation method. Thls set of uncorrelated

variables are saved tn a ftle. Finally, the user w111 have to enter

NESSUS/EXPERT again. NESSUS/EXPERT will retrieve the previously stored

files and generate a complete NESSUS/FEM file which includes the

structural model data, the random variables data and the perturbation

settings.

3.3 NESSUS/EXPERT

Now that the basic structure and approach to NESUSS/EXPERT has been

designed and implemented, emphasis is turning to an evaluation of this'Initial

prototype to determine what is good and bad about it. Work will also proceed

on extending the knowledge base to tnclude knowledge of all keywords listed tn

the MHOST User's Manual. Finally, once the results of the prototype _-

evaluation are completed and implemented, work will begin on handling the

probabilistic data in a more natural and intelligent manner.

Extensive discussions between the experts on the use of NESSUS and the

knowledge engineer implementing NESSUS/EXPERT have already begun, results so

far indicate that some changes to the basic control structure need to be made

in order to take advantage of some overlap In the use of certain data in

different sections of the input data deck. The result will probably be a

major change to the overall flow diagram given In Figure 2.25. However,

because of the use of a very high level language such as OPS5, the necessary

changes should not be difficult to make.

Work on enhancing the knowledge base will not proceed until the basic

changes to the prototype flow of control have been made. The major source of

knowledge will be the MHOST User's Manual and the knowledge will emphasize the

sue of keywords. More held files and consistency checking rules will also be

added as the project progresses. When the information In the User's Manual is

incomplete or ambiguous, knowledge will be solicited from human experts on the

use of MHOST.

Handling the input of the probabilistic data In a natural and intelligent

way will require some research on what the best interface might be.

Currently, the method of inputting of the data is the same as for the model

data. The knowledge that this section of NESSUS/EXPERT contains is simply

information about the keywords pulled mainly from the User's Manual. However,
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this method is not very helpful or efficient for the user to work with when

entering such information. Possible enhancements include provldlng some

graphic aids that can illustrate various per_utatlons on an element and some

intelligence of probability as it relates to FEM so that NESSU$/EXPERT can

make many of the decisions and perforlnmany of the needed calculations itself,

rather than making the user do them.

.p
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Introduction

B-1

An algorithm for the efficient computation of the elastostatic

response of a perturbed system discretized with finite elements has been

proposed [2] and implemented in the NESSUS code as part of the PSAH

development effort. Although this algorithm has been successfully used in

sensitivity studies of several structural systems with random parameters,

recent experience has indicated loss of stability for seemingly "small"

perturbations in some problem classes. These problems typically involve

approximate constraint equations which are embedded in the stiffness of

the unperturbed problem, and perturbations which result in the

modification of these constraint equations.

Finite element formulations for constrained problems using Lagrange

multipliers and the penalty method have enjoyed widespread use in the

recent past and have played an essential role in the development of

successful methods for certain classes of problems. The literature on

this subject is extensive and includes applications tO:

The analysis of plate and shell structures allowing shear

deformation [7, 12, 16].

Incompressible elasticity, e.g., rubber-like materials [5, 8].

Deviatoric rate-independent plasticity [10].

Incompressible flows, e.g., Stokes and Navier-Stokes equations

[5, 14, 15], etc.

A fundamental assumption in the development of the perturbation

algorithm in [2] is that the response of the unperturbed system

constitutes a "good" approximation to the response of the perturbed

system. This viii not, in general, be the case, if the prescribed

perturbation results in a noticeable change in the constraint equations

present in the unperturbed system. Violation of this condition vili often

result in loss of stability and failure to converge. Thus, the presence

of constraint equations in the finite element formulation may impose

limits in the size of some perturbation parameters which are not
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immediately obvious. Additional analysis must then be performed in order

to determine exactly what constitutes a "small" perturbation.

Perturbation methods based on Tayior series expansions about the

unperturbed solution have also been proposed by several researchers [3, 4,

11] and it is natural to ask how these patholOgies manifest themselves in

the solutions obtained by these methods_ _t can be shown that the

displacement correction obtained in the first iteration is identical to

the first-order term in the Taylor series expansion, and the one obtained

in the second iteration is identical to the second-order term in the

series. Thus, the rate of convergence of the iteratlve algorithm is

closely related to the errors resulting from truncation of the Taylor

series. One advantage of the iterative algorithm in [2] is that an error

estimate (the force residual) must be computed and is available at every

step of the iteration.

The Transverse Shear Constraint

The classical Poisson-Kirchhoff theory iof

continuity of displacement, as does the classical

theory. However, the development of compatible

multi-dimensional cases is not straightforward, and

plates requires C1

Bernoulli-Euler beam

C1 interpolations in

considerable efforts

and ingenuity were invested in the development of the first generation of

finite element formulations for thin plate and shell problems [13].

In recent years, the Reissner-Mindlin theory of plates, which can

accommodate transverse shear strains, has enjoyed widespread use. In this

formulation, only CO continuity of displacements is required, alloying the

construction of far simpler and less restrictive interpolation schemes.

As a result, finite element formulations for medium-thick plate and shell

problems have been deve10ped, which retain accuracy even for thin plate

and shell situations [7, 12, 16]. However, as the thin limit is

approached, the "pure bending" modes dominate the solution, resulting in

the emergence of penalty constraint terms in the stiffness equations.
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The fundamental aspects of the problem may be observed in the one-

dimensional analog of the Reissner-Mindlin plate theory, i.e., the

Timoshenko beam. Thus, the Timoshenko beam theory may be used as a

simpler, more manageable model exhibiting the pathologies that afflict

Reissner-Hindlin plate theory. The total potential energy, including

shear deformation, for an elastic beam of rectangular cross-section with

thickness t and width b may be written as

II ½ _ Ebt 3 d0 2 1 _ KGbt dw L= _ (_-._) dx + _ _ (_-_ - e) 2 dx - J' wqdx
0 0 0

(I)

In this form, the first integral corresponds to the "pure bending" energy

in the beam, whereas the second integral represents the shear deformation

energy, and the third and last term accounts for the work done by the

applied transverse loading. As the thickness t is reduced, the bending

stiffness (Ebt3/12) will decrease much faster than the shear stiffness

(zGbtl2). In the limit, the shear stiffness term becomes a Lagrange

multiplier enforcing the condition that

dw
0n

dx

which is the assumption made a priori in Bernoulli-Euler beam theory that

the rotation is the derivative of the transverse displacement.

The Discretized Problem

The finite element formulation for the Timoshenko beam problem using

linear interpolations for both translational and rotational degrees-of-

freedom produces an element stiffness matrix of the form
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ke E1

0 0 0 0

1 0-I

0 0

symm. I

KGA
T

h

h 2 h

1

symm.

h
2

h 2

Z
h

h 2

4

(2)

_e h is the element length, E and G are the elastic and shear moduli, I

en_ _ are the cross-sectional moment of inertia and area, and K is a

slm_.e-dependent factor to account for non-unlform shear distribution in

rd_ross-section. The particular case of a rectangular cross-section

c'orx_sponds to I = bt3/12 and A = bt, where t is the beam thickness and b

its#idth. In order to simplify the algebra, it is convenient to combine

ad_e%ending and shear stiffness terms to obtain

I I I I

h a I h

ke = k'GA (4 * h) -2 (4 - h) (3)

1 1

h
symm. (_ ÷ _)

vhes_e a is the ratio EI/(KGA) with dimension length squared. For a

recr_mngular cross-section, assuming K = I and incompressible material with

£ _ _3G, this ratio becomes _ = t2/4.

Stad_lit 7 Conditions

_he iterative perturbation algorithm proposed in [2]

s_rized by the following recursion relations:

can be

IK du (n÷l) = f - K o(n) (4a)
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_(n+1) . _(n) + d_(n+l) (4b)

vhere the symbol is used to denote the perturbed quantities. The

consistency of the algorithm is provided for in the computation of the

right-hand-side of (4a), since the process is equivalent to the

minimization of the residual

rCn>.)_/_;On>

vhich rill be attained if 6(n) - u, the exact value of the perturbed

response. Stability is achieved if each displacement correction du (n+i)

is smaller (in an appropriate norm) than the preceeding term, du (n), Both

conditions must be satisfied for the iteration to converge to the exact

solution.

The stability conditions can best be discussed in terms of an

amplification matrix, vhich is derived next. Consider the form of

equation (4a) in tvo consecutive iterations

K du (n÷I) = f - K u(n) Iteration (n)

x dJn>. _ -K/,(n-;> Iteration (n-l)

and subtract the second from the first to obtain

K du (n+1> - K du (n>.= -K(u (n) - u(n-l>)

x d;(n÷;>. Kd//n>-_d;(n> (s>

Premultiplication by K-1 on both sides yields

dCl(n÷]) = (I - K-I K) du (n)
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vhere

A = (x - x-1 K) (6)

is the desired amplification matrix. The iteration viii be stable if the

du(n) decrease monotonically, i.e., if the spectral radius of every

eigenvalue of A is less than unity.

In this form, the determination of the spectrum of the amplification

matrix A vould require a considerable amount of computation. In general,

the eigenvectors of the perturbed stiffness matrix K rill be different

from the eigenvectors of the unperturbed stiffness K. This rill result in

a nonsymmetric amplification matrix A. In addition, the size and

structure of the amplification matrix in this form is entirely problem-

dependent, so that it does not easily lend itself to analysis for the

general case.

Stability Anal_sis

In order to circumvent some of the problems raised in the preceeding

section, a Yon Neumann stability analysis is performed on the difference

pattern corresponding to the assembled system of equations at a typical

internal node. Similar techniques have been used in studies of the

stability of transient time integration schemes and nonlinear solution

algorithms [I, 9].

The fundamental concept underlying these techniques is

straightforvard, even though the detailed derivations often require

extensive algebraic manipulations. First, a set of stiffness equations

corresponding to a typical node is extracted from the assembled stiffness

equations. For a one-dimensional uniform mesh of tvo-noded beam elements,

this rill be a set of tvo equations, relating the shear and moment at node

k to the translations and rotations at nodes k-l, k and k.1. Considering

the linearly interpolated Timoshenko beam element in (3), these equations

become
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vhere fk and mk are the transverse shear force and moment at node k, and

uk and ek are the transverse displacement and the rotation at that node.

In order to capture the characteristics of the assembled system for

an arbitrary displacement vector, a sinusoidal displacement pattern of the

form

(8)

is imposed on the nodes of the one-dimensional mesh. Here, u and e are

complex constants representing the relative magnitude and phase of the

displacements, and e = 2nh/l where I is the (arbitrary) vavelength of the

prescribed sinusoidal displacement pattern. Hence, the value e = O

corresponds to the two rigid-body modes (one translation and one

rotation), and the value e = _ will result in tvo displacement patterns

which alternate signs between consecutive

displacement configuration of the discrete

obtained by appropriate combination of a number

vith different e betveen 0 and n.

nodes. Any compatible

system may therefore be

of these "basic modes"

Substituting (8) into (7) and using a few trigonometric identities,

the following expression for the effective stiffness at an arbitrary _ may

be derived:
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. k(w) u

This relation may be regarded as a "condensed" counterpart of the global

stiffness equations, corresponding to a known dlsplacement pattern (Rode).

Since no assumptions have been made on the value of w, the equation above

must hold for all values of _ that are compatible vlth the prescribed

boundary conditions.

The techniques outlined in the preceeding paragraphs may be used to

construct a "condensed" counterpart of the algorithmic relatlon in (5)

corresponding to a given value of _:

k(_) du (n÷1) = k(_0) du (n) - k(co) du (n) (10)

,,

An amplification matrix relating consecutive dls'placement corrections for

a given mode may be obtained by premultlplylng (I0) by k-l(_0) to obtain

du (n+l) - a du (n)

where

a(co) : (I -k-l(_o) k(e)) (11)

is the desired amplification matrix. Stability conditions associated with

particular classes of perturbations of the one-dimensional beam mesh

problem may then be derived from the study of the eigenvalues of (11).

An interesting class of perturbation problems involves the (not

necessarily uniform) elongation of the mesh. In the thin limit, the

transverse shear constraint will impose the condition that
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dv
ew Ig

dx

on the displacement solution of the unperturbed system. Hoverer, in the

perturbed (elongated) beam, a different transverse shear constraint is in

effect, vhich is not satisfied by the displacement solution for the

unperturbed system, i.e.,

dw

dx

From the form of (1), it is clear that a very large amount of shear

deformation energy is generated vhen the displacement solution for the

unperturbed problem is imposed on the perturbed system, even for seemingly

"small" elongations of the mesh.

In order to obtain a stability limit for this class of problems, a

uniform elongation of the mesh is considered. The element length on the

perturbed mesh thus becomes h = h(1.c), so that each element in the mesh

is elongated by the same amount. It rollers that k-l(_) may be expressed

as

h (l+cos(_) + F (1-cos_) - t sin_

h 2 1 _2 (1-cos_) (12)
k-l(_) - 4_, (1 - cos_) 2 sin_ h

and k((_) as

121 ]•._(_) = h(i*¢) (-cos_) t sin_} (13)

L-i sin_ h(l÷c) (l+cos_) ÷ (l-cos_)
2 h(l÷_)

The resulting amplification matrix rill be
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a(_) =

¢ + ¢ h2
_-_ _ (_) cot2(_)

. (h)cot(_)

h2 ¢ (h)cot(_)i c(_) cot3(_) -i i_

h2
1+¢- ¢(_) c°t2(_ )

(14)

and has eigenvalues of the form

¢ 1 ¢2f2 J 4_4._)kl(u) " _'¢ - _ 1+¢ (1- 1 + t2f2
(15a)

k2(_o) = ¢ 1 ¢2f2 j 41+---_ - 2 1+¢ (1 + 1 + ¢-_f2 )
(15b)

where

h 2
f2 = (_) cot2(_) (15c)

All values of _ which are relevant to the analysis of the discrete

system lie between 0 and _. The highest deformation modes representable

by the discretized system correspond to _ = n, which will result in

xl= ½ "

Thus, even for relatively large ¢, the spectral radius of the

amplification matrix will be less than unity and the corresponding

deformation modes remain stable. At the opposite end of the spectrum lie

the rigid body modes, corresponding to e = O. As e approaches O, the

value of cot(_) becomes unbounded. This means that the rigid body modes

are unconditionally unstable for any nonzero value of ¢, as expected.

An asymptotic analysis of the eigenvalues of the amplification matrix

for large values of c will yield
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k I =1

From the behavior of cot(_), it can be concluded that f may become quite

large for small values of u. This will result in 1 21 > 1 even for

seemingly small ¢, and will cause the associated deformation mode to grow

unbounded. It should be emphasized, however, that the asymptotic

expressions above typically represent reasonable approximations to the

eigenvalues of a(_) only for values of ¢ well above the stability limit

and cannot be used to approximate the etgenvalues within the stability

bounds.

From the above discussion, it is clear that the higher deformation

modes (with small values of u) will govern the stability of the algorithm.

This is in contrast with the well known results for the stability of

explicit time integration algorithms in dynamics, which are governed by

the highest frequency modes present in the discretized system. Any

attempts at enhancing the stability of the perturbation algorithm must

therefore take into account the fact that the displacement modes which

require stabilization are among the most needed to represent the response

of the perturbed system. Stability in the higher deformation modes must

not compromise the accuracy of these modes, which rules out the use of

conventional stabilization procedures.

A Numerical Example

A test problem was set up using a one-dimensional mesh of ten

Timoshenko beam elements (NESSUS Element 98) with h = 2.00 and t = 0.25,

and made of incompressible material (_ = 0.50). Three different cases

were analyzed, corresponding to the following boundary conditions:



B-12

lo

.

o

Cantilever beam. In this case, the lowest displacement mode has

a wavelength of four times the beam length, corresponding to

e-n/20. J

Beam with both ends pinned. The wavelength of the lowest Bode

is twice the beam length, corresponding to c_.n/lO.

Beam with both ends fixed. The wavelength of the lowest mode ls

equal to the beam length, corresponding to _n/5.

The variation of the spectral radius of the eigenvalues of the

amplification matrix in the lowest=mode as a function of the perturbation

parameter ¢ is shown in Figures 3 to 5. In all cases, loss of stability

was observed at the value of ¢ corresponding to a spectral radius of 1.O0,

as predicted by the analysis. Similar behavior has been observed using a

shell model (NESSUS Element 75) of the same problem.

Conclusions

The stability conditions for the elastostatlc perturbation algorithm

proposed In [2] have been described. AVon Neumann stability analysis of

the algorithm was performed for the case of a uniform one-dimensional mesh

of linearly interpolated Timoshenko beam elements. Closed form

expressions for the stability limit in terms of the perturbation parameter

¢ were derived for the case of uniform elongation of the mesh by a factor

of (1+¢). This form of perturbation has been observed to result in loss

of stability with the current implementation of the algorithm even for

seemingly small values of the perturbation parameter c. The stability

limits predicted by the analysis are in full agreement with those observed

in numerical experiments on one-dimensional meshes of linearly

interpolated beam and plate elements.

The development of general closed-form results for unstructured,

multi-dimensional meshes subjected to non-uniform distortion does not

appear to be practical. However, limited experience has indicated that

the results for the uniform mesh can be used to obtain a conservative

estimate to the stability limit for a more general mesh. Therefore, the

development of "smart" algorithms to adaptively adjust the size of the
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perturbation parameter in order to ensure convergence appears very

promising.
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Overall Length ---20.0

Element

h=2.0

FIGURE 1: Mesh for the One-Dimensional Model Problem
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FIGURE 2: Typical Displacement Patterns for the Values of

Used in the Numerical Example
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FIGURE 3 : Spectral Radius of the Amplification Hatrix as a

Function of the Perturbation Parameter

c for h/t = B.00 and _ = _/20
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FIGURE 4 : Spectral Radius of the Amplification Matrix as a

Function of the Perturbation Parameter

c for h/t = 8.00 and m = m/10
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FIGURE 5: Spectral Radius of the Amplification Matrix as a

Function of the Perturbation Parameter

¢ for h/t = B.O0 and _ = n/5
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1.0 DISCUSSION

In private correspondence of January 13, 1986 frith Y. N. Chert of the

American Bureau of Shipping, we were informed chac certain numerical algo-

rithms in the Wu/FPI code lacked the precision co ensure "small" errors

in resulting point probability escimaces. Those subroutines for which

improvements were suggested were:

1. The normal CDF

2. The inverse normal CDF

3. The gamma function

4. The shape parameter of the gamma function

5. The EVD parameters

ABS implimenced improved numerical procedures in FPI and studied several

examples. Because the differences in point probability estimates observed by

ABS in old FPI and their new version seemed siEnificanc , a study was undertaken

to carefully examine the approximate forms and co introduce improvements where

appropriate. The improvement in the Euler constant (for EVD parameters)

for 8 digit accuracy was trivial and was implimenced immediately. Numerical

algorithms for the ocher terms cited above were developed. Their performance

was carefully examined. A derailed description of the approximation forms

and their behavior is presented in Chapter 2.

The forms presented in Chapter 2 were introduced into FPI, replacin E

their less accurate councerparts. FPI analysis using the old and new code

was performed on several examples. The results are summarized in Chapter 3.

Differences in the results of the old and new code are far less than

observed by ABS in their version of the code. At chls rime, there is no

explanation for the discrepancy
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2.0 APPROXIMATE FORMS OF FUNCTIONS USED IN PROBABILITY CALCULATIONS

2.1 Ga._a Function

Ref: Abramowitz, Handbook of Mathematical Func¢ions, NBS.

r(x)- I "tx-l" e-= at,
o

x>O

The Asymptotic Formula

1 1 1
_n r(x) -_ (x - _) _n x - x + _ _n (2=) + 12x

300x 3

1 1
+ +

1260x 5 1680x 7

(x -'- ® in [A_ x[ < _)

After testing this formula, we found that when x - 6, ten digit accuracy is

provided. If x is increased, this form is even more accurate.

In this program, x is divided into two parts X _ 6, and 0 < x < 6.

>

If x- 6, use the asymptoclc formula direc=ly. If 0 < < 6, then le=

N = INTEGER (x)

Z=6-N+x

and calculate £n r(z) using the asymptotic formula.

6-N

Then let, £n r(x) = £n r(z) -

J=l

£n(x + J - 1.0)

Example x=l.9

Z = 6. - 1 + 1.9 = 6.9
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_n r(1.9) = Zn

+ Ln

r (t.9) =

r(6.9)

(5.9)

- (_n (1.9) + _n

I_6.9)
9.n (1.0)(2.9)(3.9)(4.9)(5.9)

r(6.9)
(1.9) (2.9) (3.9)(4.9) (5.9)

If more accuracy is needed, then increase

7, 8, or a larger number

the

(2.9) +

6 in

#.n (3.9) + #.n (4.9)

the above algorithm to
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FiR. 1 Flowchart for Gamma Function Approximation

Read x i

N = INT(x)

Z - 6 - N + x

Yes

_n r(z)

[Calculate _n r (z) [

- _ r(z)- ! _. (x+.J-1.cP1

Z m X
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Table 1. Performance of Gamma Function Approximation

x Asymptoclc formula Exact

1.0 .9999999999 1.0

1.1 .9513507698 .9513507699

1.2 .9181687423 .9181687424
_m

1.3 .8974706962 .8974706964

1.4 .8872638174 .8872638175
,,, ,

1.5 .8862269254 .8862269255

1.6 .8935153492 .8935153493

1.7 .9086387328 .9086387329

1.8 .9313_37799 .9313837710

1.9 .9617658318 .9617658311

2.0 .9999999999 1.0
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Subroutine for Galna Function

456

$

457

DOUBLE PRECISION FUNCTION GAMMA(YI,PI)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
X=YI+I.D+O
Z=X

IF(X.GE.6.0D+O)GO TO 456

N=INT (X)

Z= (6.0D+0) -N+X

Y=I. D+O/Z**2

ALG= (Z-. 5D+0 )*DLOG (Z )+. 5D+O*DLOG (P I*2. D+g )-

Z- (1. D+O/(12. D+O*Z) )* ( ((Y/O. 14D+3-1. D+0/0. 1'35D+3) w-y+
1. D+O/. 3D+2)*Y-1. D+O)

IF(X.GE.6.D+O)GO TO 457

ITE=b-N

DO 3 J=I,ITE
A=X+J-1.D+O

ALG=ALG-DLOG(A)

CONTINUE

GAMMA=DEXP(ALG)

RETURN

END
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2.2 Bisection Method for the Shape Par_eter a of the Welbull Distribution

The coefficient of variation CX in terms of the shape parameter a of

the Weibull distribution is given as

=/r2(t/ +a) - 1
Cx ¢ r(l + 2a)

Given CX, it is required to compute a.

Define

Z(a) = - (I + C_) r2(l + a) + r(l + 2a)

Approximate aI = (Cx)I'08. Then calculate F(a I), and let

_2 = aI + .i. Calculate F(a 2) and let FI2 = F(a I) • F(a2).

If FI2 _ O; we know that the root will be bracketed by a and a 2.

Then use the general bisection method as described below.

If FI2 > 0, there are four possible cases.

F(a)

Case 1

F(a)

F(a)

CL C_

C_

Case 2

F(a)

Case 3 Case 4
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If the function looks like Case 1 or Case 3, then iec _1 = a2; a2 = a2 + O.

If the function looks like Case 2 or Case 4, then lec a 2 = _i; _i = al " O.

Then calculate FI2 until FI2 _ O, at which time the bisection aethod can be used

(A) General Bisection Method

a I + a 2
(*)1. a3 = 2

FI3 = F(a I) , F(a3)

If FI3 < O, a2 = _3

If FI3 > 0, _i = u3

If ]_I - a2 ] >_ 0-7 E° to (*) and repeat.

i

_0 -7 STOP; Le_ _ = a 1

(B) Performance

Consider the Rayleigh Distrlbucion

CX - .522723201

Asymptotic formula

a 2.00000014531220

Exact

2.0
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Program: Bisection Method for Weibull Shape Parameter

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

F(X,COV,PI)=-(1.DO÷COV**2)*GAMMA(X,PI)**2+GAMMA(2.*X,PI)
PI=4.DO*DATAN(1.DO)

COV=.522723201

XI=COV**(1.0S)

7 FI=F(X1,COV,PI)
IF(DABS(F1).LE.1.D-7) GO TO 1

X2=XI+.1DO

F2=F(X2,COV,PI)
F12=Fl*F2

IF(F12. LT.O.) GO TO 20

IF (Ft. GT. 0..AND. F2. GT. FI)

IF (FI.LT.O. •AND. F2. GT. FI)

IF(FI.GT.O..AND.F1.GT.F2)

IF(FI.LT.O..AND.FI.GT.F2)

GO TO 7

20 CONTINUE

2 X3=(XI÷X2)*.5D_

F13=F(X1,COV,PI)*F(X3,COV,PI)
IF(F13.LT.O.) X2=X3

IF(F13. GT.O.) XI=X3

DX=DABSIX1-X2)

IF(DX.GE.1.D-7) GO TO 2

I ALPHA=I.DO/XI

WRITE(*,*) ' ALPHA = ",ALPHA
ZZ=.95DO

DO 1900 I=1,21
ZZ=ZZ+.O5DO

WRITE(*,*) ZZ,GAMMA(ZZ-1.DO,PI)
1000 CONTINUE

STOP

END

XI=X1-.IDO

XI=X2

XI=X2

XI=XI-.1DO
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2.3 CDF of Normal Distribution

Ref: Abramowlcz: Handbook of Mathematical Funccigns, NBS

x I 1 2p - #(x) = /2_ e - _t d=

1 - Z(x)(blt + b2 t2 + b3t3 + b4 t4 + b5_5)

Z(x)(blt + b2t2 + b3t3 + b4 t4 + bst5)

>
If x-0

Ifx<O

h_ere, 1 2
1 ---X

z(x) - _ e 2

1
t" l+px

p - 0.231621 .,

bI - 0.319381530

b2 - -.356563782

b = 1.781477947
3

b4 = -1.821255978

b = 1.330274420
5

-7
This approximation is advertised to produce errors in P of less than i0 .

(See performance on Table 2, p. 15.) When x > 0, it appears that this level of

accuracy is being realized. For the very small P values associated with x < O,

errors are somewhat larger. But the operational range for structural rellabillt

analysis is -5 < x < 5, and at worst we are getting four place accuracy.

It is important to note that we cannot verify the accuracy of column (4)

in Table 2, p. 15. During this investigation, some anomolles were discovered

in the Abramowitz table.
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Program: S_andard Normal CDF

C THIS

2

PROGRAM CDFPDF

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

COMMON /TWO/ PI,SPI2
PI=4.DZ*DATAN(I.DO)

SPI2=I./(DSQRT(2. DZ*PI))

X=-II.DO

DO 1 I=1,22
X=X+I.DO

PHI=CDFNOR(X)

XPHI=XINV(PHI)

WRITE(*,*) X,PHI,XPHI
CONTINUE

STOP

END

DOUBLE PRECISION FUNCTION CDFNOR(Z)

FUNCTION COMPUTES THE NORMAL CDF.

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

COMMON /TWO/ PI,SPI2

DATA A/O.31938153DO/,B/-O.3565_3782DO/,C/I.TS1477937DO/,

+D/-1.821255_78DO/,E/I.330274429DO/
EZ=-(Z**2)*.5DO

CDFNOR=O.0DO

IF(EZ.LE.-200.0DO) GO TO 1

ZX=SPI2*DEXP(EZ)

IF(DABS(Z).GT.6.DO) GO TO 2

T=I.DO/(1.DO+(O.2316419DZ*DABS(Z)))

CDFNOR=ZX*T*(A+T*(B+T*(C+T*(D+T*E))_)

GO TO i

Z2=I.DO/(Z*Z)

CDFNOR=ZX*_I.D_-Z2*(I.DO-3.D3*Z2*(1.D_-5. D_*Z2_))/DAB_,Z)

IF(Z.ST.O.0DZ) CDFNOR=I._DO-CDFNOR

RETL_

EN_
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2.4 Bisection Method for the Inverse Normal CDF, x = o-l(P)

Ref: Abramowltz, Handbook of Mathematical Functions, NBS

First, the following method is used to obtain an approximation to x.

2
C +C t+C2t-1 o 1

xI = ¢ (P) = t -
1 + dI t + d2 t2 + d3 t3

where,

t = ,'-2 in P, 0<P<.5-

C " 2.515517
o

C1 = .802853

C2 = .010328

dI = 1.432788

d2 = .18926

d3 = .001308

This approximation gives only four digit accuracy.

Define F(x, P) = P - ¢(x).

i. Let xI = @-l(p) using the "crude" approximation above.

F(x, P) looks like

Then

F(x I,P)

Flq

xI x*
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2. Let F 1 - F(Xl, P) (A)

If F1 > O,

If F1 < O,

If F1 " O,

x " xI + .001

x 2 " xI - .001

STOP

Then in the second iteratlon, let

F2 - F(x2, P)

Calculate F12 - F(xI, P) * F(x2, P)

If FI2 < 0, use general Bisection Method

If FI2 > 0, then X1 - x 2

F1 " F2

go back to (A) and repeat.

The function ¢(-) is obtained using the form of See. 2.3.
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I ' JRead x

-0

ii i.

F2 ,, F(x2,. P)

FI2 ,, F1 * F2

Use Bisection Method [

XINV=Xl I

> 0

F1 F2xI _ x2

where F(x, P) = P - ¢(x)

Fig. 2 Flow Chart for Inverse Normal Approximation
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Table 2. Performance of Normal and Inverse cdf Approximations

(1) (2) (3) (4)

P = _(x) using form

for CDF (Abramowicz)

1.619845601 E-24-10

-8 6. 220925810 E-16

-6 9.901218571 E-IO

-4 3. 168603459 E-5

-3 1.349967223 E-3

-2 2. 275006201 E-2

-I 1.586552595 E-I

0 4. 999999994 E-I

1 8. 413447404 E-I

2 9. 772499379 E-I

3 9.986500327 E-I 9.986501019 E-I

L,

4 9.999683139 E-I 3.99999999 9.999683288 E-I

6 9.999999990 E-I

8 1.0

÷
Approximate form as

described in Sec. 2.3

I
_-_P)using bisection P=@(x) exact as published

method in Abramowitz

-9.99999999 7.6199 E-24

-7.99999999 6.2210 E-16

-5.99999999 9.8659 E-IO

-3.99999999 3.1671 E-5

-3.00000000 1.349898032 E-3

-2.00000000 2.275013195 E-2

-.99999999 1.586552540 E-1

3.61190816 E-11 5.0000 E-1

•99999999 8.413447460 E-I

2.0000000D t 9.772498680 E-I

3.00000000

4.99999998

7.9911351772922

÷
The inverse is obtained

using the column (2)

values with the algorithm

described in Sec. 2.4.

Columns (i) and (3)

should compare.

÷
Column (4) and

column (i) should

compare. See

comments on p. i0.
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program: Bisection Method for Inverse Standard NormalCDF

8@

a

2

DC_BLE P_ECISION FUNCTION XINV (Z)

I_LICIT DOUBLE PRECISION (A-HgO-Z)
F (X, P I )=P 1-CDFNOR (X )

Y=Z

IF (Z. @T. @. 5D_) Y=I. D@-Z

IF(Z.EQ.1.D@) STOP

C@=2.515517D0

C1=@.8@2853D_

C2=@.@1@328D@

D1=l.432788D@

D2=@.1892_gDO

D3=O.@O13@SDO

T=(-2.DO*DLOG(Y))**.5DO

DNUM=C@+T*(CI+T*C2)

DNOM=I.@DO+T*(DI+T*(D2+T*D3))

X=T-(DNUM/DNOM)

IF(Z.LT.@.5D@) X=-X

XI=X

FI=F(X,Z)
IF(FZ.GT.Z.DO) X2=XZ+.@ZID@

IF(Fi.LT.@.D@) X2=XZ-.@@IDO

IF(FI.EQ.O.DZ) GO TO 2

F2=F(X2,Z)
FIZ=FI*F2

:_(Ft2.LE.@.D@) GO TO 8

XI=X2
FI=F2
GO TO 80

X3=(XI÷X2)*.5D@

F13=F(X1,Z)*F(X3,Z)
IF(FI3.LE._.D@) X2=X3

IF(FI3.GT.@.DZ) XI=X3

DX=DABS(XI-X2)

IF(DX.GT.1.D-1Z) GO TO 8

XINV=XI

RETURN

E_:D
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3.0 EXAMPLES COMPARING OLD AND NEW FPI

Following are several examples for which comparisons of results from

old and new FPI are presented. These examples were those studied in an

AME master's report by Jack T. L. Chang entitled, "Investigation of the Wu

Algorithm for Computing Structural Reliability" (October 1985). In summary,

introduction of the improved algorithms did not significantly alter the

results, at least for the examples considered.

Results for the improved ABS FPI program for those examples considered

are given in parentheses. In Examples 4 and 5, the results of the improved

versions of the ABS and the UA codes differ significantly. There is at this

time no explanation for the disagreement. An efficient ,Monte Carlo code

for point probability estimates is under development. It will be able to

check FPI calculations, but because the same numerical algorithms will be

in both UA codes, the comparisons may not resolve this issue.
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EXAMPLE I Note: ABS program results in parentheses

-DATA

TAILU_Z FUNCTION : g - R- ( L+ D )

FAILURE EVENT

VARIABLE

R

L

D

: g < 0

DISTRIBUTION [. F_--AN/MEDIAN*
WEIBULL 50.

EVD 10.
LOGNOKMAL 20. *

STD. DEV. C.O.V.

5.0

2.0

3.034

0.1
0.2
0.15

R-F

Wu/FPI

Pf

Pf

Pf

ORIGINAL

PROGRAM (1)

2.768

2.821 E-3

2.692

3.554 E-3

3.600 E-3

NEW

PROGRAM (2_)

2.783

(2.783)

2. 6931 E-3

(2.6931 E-3

2.707

(2.680)

3.398 E-3

(3.682 E-3)

DIFFERENCE

%(3)

0.54

4.79

0.55

4.59

(I) Developed by C. Kelly, Y. T. Wu

(2) With improvements to numerical algorithms: (a) gamma function, (b) Weibull

shape parameter, (c) standard normal cdf, (d) inverse normal cdf,

(e) EVD parameters

(3) Assumes new program is exac=

(4) Does not have improvements in numerical algorithms
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_LE 2 Note: ABS program results in parentheses

-DATA

FAILURE Function :

FAILURE EVENT :

g "E--_ ( 2N )b+ ¢} ( _)c_ cs

g < 0

VARLABLE DISTRIBUTION MEAN/MEDIAN* I 5TD. DEV. C.O.V.

Cs EVD 0.0015 0.00015 0. I

a_ LOGNORMAL 310.0 * 145.10 0.43

¢_ LOGNORMAL 9.14 * 0.458 0.05

R-F

Wu/F? I

Pf

t3

Pf

ORIGINAL

PROGRAM (1)

2.881

1.981 E-3

2.851

2.183 E-3

Mon_e

Carlo(4)__ PE 2.123 E-3

NEW

PROGR.EM (2)

2.881

(2.881)

1.983 E-3

(1.983 E-3)

2.183 E-3

(2.215 E-3_

DIFFERENCE

%(3)

0.00

0.I0

O. 04

0.00

(I) Developed by C. Kelly, Y. T. Wu

(2) With improvements to numerical algorithms: (a) gamma function, (b) Weibull

shape parameter, (c) standard normal cdf, (d) inverse normal cdf,

(e) EVD parameters

(3) Assumes new program is exact

(4) Does no__!=have improvements in numerical algorithms
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EXAMPLE 3 Note : ABS program results in parentheses

-DATA

FAILURE FUNCTION : g - XI + 2X2 + 2X3 +X 4 - 5( X5 + X6 )

FAILURE EVENT : g < 0

VArIAbLE
X1

X2

X3
X_

X5
X6

I DISTRIBUTION
LOGNORMAL

LOGNORMAL

LOGNORMAL

LOGNOR.MAL

LOG'NORMAL

LOGN OR.".AL

I MKAN/MEDIAN* $TD. DEV.

119.4 *

119.4 *

119.4 *

119.4 *

38.31 *

47.89 *

12.
12.
12.
12.
12.
15.

I C.O.V.
0.1

0.1
0.1
0.I

0.3

0.3

R-F

Wu/FPZ

Pf

Monte

Carlo (4) Pf

ORIGINAL

PROGRAM (1)

2.348

0.942 E-2

2.235

1.274 E-2

1.221 E-2

NEW

PROGRAM (2)

2.348
(2.348)

0.943 E-2
(0.943 E-2)

2.234

(2.256)

i.274 E-2

(1.204 E-2)

DIFFERENCE.

%(3)

0.00

0.1

0.04

0.00

(I) Developed bv C. Kelly, Y. T. Wu
(2) With improvements to numerical algorithms: (a) gamma function, (b) Weibull

shape parameter, (c) s:andard normal cdf, (d) inverse normal cdf,

(e) EVD parame:ers

(3) Assumes new program is exac:

(4) Does no: have improvements in numerical algorithms
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EXAMPLE 4 Note: ABS program results in parentheses

-DATA

FAILURE FUNCTION

FAILURE EVENT

: g " Xl + X2 + X3 + Z4 + X5 " YI - Y2 - Y3 - Y4 - Y5

:g<o

VARIABLE DISTRIBUTION MEAN/MEDIaN* STD. DEV. C.O.V.

XI

X2

X3

Xw

X5

Y1

Y2

¥3

Y_

Y5

WEIBULL

WEIBULL

T_'EIBULL

WEIBULL
WEIBULL

EVD

EVD

EVD

EVD

EVD

10.0

I0.0

10.0

10.0

10.0

5.0

5.0

5.0

5.0

5.0

3.5

3.5

3.5

3.5

3.5

1.75

1.75

1.75

1.75

1.75

0.35

0.35

0.35

0.35

o. 5
0.35

0.35

0.35

0.35

0.35

R-F

Wu/F?I

B

Pf

ORIGINAL

PROGRAM (1)

2.945

I.615 E-3

2.866

pf 2.078 E-3

Monce

Carlo(4)__ pf 2.140 E-3

N_J

PROGRAM (2)

2.959

i'2.959)

1.545 E-3

(1.545 E-3)

2.877

(2.810)

2.011 E-3

(2.477 E-3)

DIFFERENCE

%(3)

0.47

4.53

0.38

3.33

(i) Developed by C. Kelly, Y. T. Wu

(2) Wi=h improvemen=s =o numerical algori=hms: (a) gamma function, (b) Weibu!l

shape parameter, (c) s=andard normal cdf, (d) inverse normal cdf,

(e) EVD parameters

(3) Assumes new program is exact

(4) Does no= have improvemen=s in numerical algorithms
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EXAMPLE 5 Note: ABS program results in parentheses

-DATA

FAILURE FUNCTION
: g - X 1 + X2 + X3 + X4 .4- X5 - Y1 - ¥2 - Y3 - Y4 -

FAZLURE EVENT : g < 0

DISTRIBUTIONVARIABLE

EVD •

WEZBULL
LOGNO_MAL

EVD

WEIBULL
EVD
WEIBULL

LOGNOR.MAL

EVI)
WEIBULL

X 1 "
X2

Z3
X_

X5
YI
Y2

'/3
Y_
Y5

[ ,'_AN/I_D 1AN*
10.0
10.0

9. 2847 *
10.0
10.0

5.0
5.0
4. 6424 *
5.0
5.0

STD:DZV. C.O.V.
4.0

4.0

4.0

4.0

4.0

2.0
2.0
2.0
2.0
2,0

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0.4

0._

R-F

Wu/FPI

B

Pf

ORIGINAL

PROGRAM (1)

2.649

4.031 E-3

2.696

3.508 E-3

MonKe
Carlo (4) 3.643 E-3

NEW

PROGRAM (2)

2.652

4. 003 E-3

2.698

(2.65S)

3.491 E-3

(3. 984 E-3)

DIFFERENCE

%(3)

0.ii

0.70

0.07

0.49

(i) Developed bv C. Kelly, Y. T. Wu

(2) With improvemen=s co numerical algori=hms: (a) gamma func=ion, (b) Weibull •

shape parameter, (c) standard normal cdf, (d) inverse normal cdf,

(e) EVD parame=ers

(3) Assumes new program is exact

(4) Does not have improvements in numerical algori=hms
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EXA_LE 6 Note: A3S program results in parentheses

-DATA

FAILURE FUNCTION

FAILURE EVENT : g < 0

VARIABLE DISTRIBUTIO N

R NOI_IAL

D NORMAL

r 4T •
: g " R- _ _D2 )

MEAN/F_DIAN*

170.

29./,

STD. DEV.

25.

3.

C.O.V.

O. 14706

0.10204

T = 50,000

R-F

Wu/FPI

Exact

solution

|

B

Pf

Pf

ORIGINAL

PROGRAM. (I)

2.902

1.856 E-3

2.835

2. 296 E-3

pf 2. 301 E-3

NEW

PROGRAM (2)

2.902

(2.902)

i. 856 E-3

(1.856 E-3)

2.834

(2.833)

2.297 E-3

(2.306 E-3)

DIFFERENCE

Z(3)

0.00

0.00

0.03

0.04

(i) Developed by C. Kelly, Y. T. Wu

(2) With improvements =o numerical algorithms: (a) gamma function, (b).Weibull

shape parameter, (c) standard normal cdf, (d) inverse normal cdf,

(e) EVD parameters

(3) Assumes new program is exact
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T s 20,000

R-F

Wu/FPI

Exact

solution

B

Pf

Pf

Pf

ORIGINAL

PROGRAM (1)

5.273

0.673 E-7

5.111

i. 599 E-7

1.502 E-7

NEW

pROG (2)

5.273

0.673 E-7

5.110

I.612 E-7

0.00

0.00

0.02

0.81

T m 5,000

R-F

Wu/FPI

Exact

solution

U_..

_f

B

Pf

Pf

ORIGINAL

PROGRAM (1)

6.492

6.484

4.453 E-II

4,646 E-II

NEW

PROGRAM (2)

6.492

4.236 E-II

6.484

4.459 E-II

DIFFERENCE

%(3)

O. O0

0.005

0.00

O.02
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EXAMPLE 7 Note: ABS program results in parentheses

-DATA

FAILURE FUNCTION : g - R - V 300p2 + 1.92T 2

FAILURE EVLNT : g < 0

VARIABLE DISTRIBUTION MEAN/MEDIAN* STD. DEV, C.O.V,
,IllI, I ,I

R WEI BULL 48.0 3 •0 0. 0625

P LOG'NORMAL O. 987 * 0.16 O. 16

T EVD 20.0 2.0 0. I

R-F

Wu/FP Z

ORIGINAL

PROGRAM (1)

6 3.094

Pf 0.988 E-3

8 2.893

Pf i. 911 E-3

Carlo(4) Pf 1.800 E-3

NEW

PROGRAM (2)

DIFFERENCE.

%(3)

3.085

(I.085_

1.018z-3 2.9s
(1.016 E-3)

2.886 0.24

(2.868)

1.950 E-3 2.0

.(2. 064 _-_'_

0.29

(i) Developed by C. Kelly, Y. T. Wu

(2) With Improvements co numerical algorlchms: (a) gamma function, (b) Weibull

shape parameter, (c) standard normal cdf, (d) inverse normal cdf,

(e) EVD paramecers

(3) Assumes hey program is exact

(4) Does no_._!_have improvements in numerical algorithms
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EXAMI'I._ 8

-DATA
FAILURE FUNCTION : g - K - S

FAILURE EVENT : g < 0

"VARIABLE t DISTRIBUT.I.0,N.
K WEIBULL

S EVD

A LOGNOI_MAL

I M2__NIM_D IAN*

150.

I00.

O.l *

STD. DEV.

25.0

20.0

0.1414

C.O.V.

0.16667

0.2

1.0

s

o
s

•" I00

" 20

R-F

Wu/FPI

B

,,=,,

Pf

Pf

ORIGINAL

PROGRAM (1)

2.060

i. 968 E-2

i.967

2.461 E-2

Mon=e

Carlo (4)_ pf 2.412 E-2

NEW

PROGRAM (2)

2.067

i.938 E-2

1.974

2. 419 E-2

DIFFERENCE

%(3)

0.34

1.55

0.35

1.74

(I) Developed by C. Kelly, Y. T. Wu

(2) With improvements Co numerical a!gori=hms: (a) gamma function, (b) Weibull

shape parameter, (c) s=andard normal cdf, (d) inverse normal cdf,
(e) EVD parameters

(3) Assumes new program is exa¢=

(4) Does no_.___have improvements in numerical algorithms
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EXAMPLE 8

-DATA

FAILURE FUNCTION : g = K - S

FAILURE EVENT : g < 0

VARIABLE DISTRIBUTION

K WEIBULL

S EVD

A LOCNOP_MAL

_.AN/_'__DIA.N*

150.

a0.

0.I *

STD. DEV.

25.0

16.0

0.1414

[ C.O.V.

0.16667

0.2

1.0

U
S

0
S

= 80

= 16

8

R-F

Pf

ORIGINAL

PROGRAM (1)

2.482

6. 534 E-3

S 2.380

Wu/FPI

Pf 8.672 E-3

Monte

(4) Pf 8. 630 E-3
Carlo

NEW

PROGRAM (2)

6. 382 E-3

2.389

8.453 E-3

DIFFERENCE

_(3)

0.32

2.38

0.38

2.59

(I) Developed by C. Kelly, Y. T. Wu

(2) Wi=h improvements to numerical algori=hms: (a) gamma function, (b) Weibull

shape parameter, (c) standard normal cdf, (d) inverse normal cdf,

(e) EVD parameters

(3) Assumes new program is exact

(4) Does no= have improvemen=s in numerical algorithms
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EXAMPLE 8 Note: ABS program results in parentheses

-DATA
TAILtmZ FUNCTION : g - K- S

FAILL_ E_TT : 9 ( 0

VARIABLE j DISTRIBUTION

K WEIBULL

S EVD

A LOGNORMAI

KL_ /MXD IA._*

150.

60.

0-! *

s_. DEV.
25.0

12.0
O.l&l&

I. C.O.V.
0.16667
0.2
1.0

Us = 60

c = 12
s

R-F

Wu/}TI

Monte

Carlo (4)

8

Pf

ORIGINAL

PROGRAM (I)

3.006

i. 323 E-3

2. 892

i.914 E-3

Pf 1.870 E-3

NEW

PROGRAM (2)

3.018

(3.018)

2.905

(2.897)

O. 40

J

4.01

0.45

4.30

(i) Developed bv C. Kelly, Y. T. Wu

(2) With improvements to numerical algorithms: (a) gamma function, (b) Weibull

shape parameter, (c) standard normal cdf, (d) inverse normal cdf,
(e) EVD parameters

(3) Assumes new program is exact

(4) Does no..__have improvements in numerical algorithms
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E,XAHPI..E 9 No_e: ABS program results in parentheses

-DATA

FAILURE FUNCTION : g - A - N O {

fpp
G

Y

4¢0
R

f_p __ + I - fpp

C (Y Ae0)Y a (¥ A¢o)"

:g<0

DISTRIBUTION MEAN/MEDIAN* STD. DEV. C.O.V.--

LOGNOR.MAL

NORMAL

LOGNOIL_AL

LOGNORMAL

EVD

tOG_O_'_L

1.0
0.7
0. 222
1.0
0.0005
1.673

* 0.3132
0.07

* 0.0956
* 0.1517

0.00008
* 0.7208

0.3

0.1
0.4
0.15
0.16
0.4

R-P

Wu/FPI

Pf

Pf

ORIGINAL

PROGRAM (I)

2. 384

8.552 E-3

2.338

9. 696 E-3

Monte

Carlo(4) Pf i0.020 E-3

NEW

PROGRAM (2)

2.385

(2.385)

8.550 E-3

(8.550 E-3)

2.338

(2.315)

9.691 E-3

(10.320 E-3)

DIFFERENCE

%(3)

0.04

0.02

0.00

0.05

(i) Developed by C. Kelly, Y. T. Wu

(2) Wi=h improvements to numerical algorithms: (a) gamma func=ion, (b) Weibull
shape parame=er, (c) standard normal cdf, (d) inverse normal cdf,

(e) EVD parameters

(3) Assumes new program is exac_

(4) Does no____=have improvemen=s in numerical algorithms
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EXAMPLE I0

-DATA

FAILURE FUNCTION : g - R2 - X! - X2

FAZLURE EVENT : g < 0

VA_IA3LES XI , I • I , 2 .

DISTRIBUTION
All Xi are Chi-Squar8 dls=rlbu=ion
wi=h degree of freedom v = I .

MEAN 1.0

STD. DEV. 1.4142

C. O. V. 1.4142

CONSTANT , R 3 , 4 , 5 .

R-3

R-F

Wu/PPI

Pf

Pf

ORIGINAL

PROGRAM (I)

2.584

O.489 E-2

2.178

1.471 E-2

Exact

solution Pf i.ii0 E-2

NEW

PROGR2uM( 2 )

2.583

0.490 E-2

2.178

1.471 E-2

DIFFERENCE

%(3)

O.04

0.20

0.00

0.00

(i) Developed by C. Kelly, Y. T. Wu

(2) Wi=h improvemen=s to numerical algori=hms: (a) gamma func=ion, (b) Weibull

shape parame=er, (c) s=andard normal cdf, (d) inverse normal cdf,

(e) EVD parame=ers

(3) Assumes new program is exact
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R=4

R-F

Wu/_I

Mon _ e

Carlo (4)

B

Pf

Pf

Pf

ORIGXNAL

PROGRAM (I)

3.676

i.186 E-4

3.393

3.456 E-4

3. 350 E-4

3.675

i.189 E-4

3.390

3.494 E-4

DIFFERENCE

%(3)

0.03

0.08

0.09

1.09

Rffi5

R-F

Wu/FPI

Exact

soluclon

I

Pf

Pf

Pf

ORIGINAl

PROGRAM (I)

4.735

1.096 E-6

4.545

2. 745 E-6

3.730 E-6

NEW

PROGRAM (2_

4.735

1.098 E-6

4.535

2.879 E-6

DIFFERENCE

%(3)

0.00

0.18

0.22

4.65

, L
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EXAMPLE 10

-DATA
FAILURE Fb'NCTION : g • R 2

FAILURE EVENT : g < 0

- X l- X_,- X 3- X,.- X 5

VARIABLES

DISTRIBUTION

Xi , t - 1, 2, 3, 4, 5.

All Xi ere Chi-Square distribution

lrlCh de_ree of freedom v - I .

MEAN 1.0

STD. DEV. 1.4142

C. O. V. 1.4142

CONSTANT , R 3,4,5.

-COMPARISONS OF SAFETY INDEX AND PROBABILITY OF FAILURE , Pf

R'3

R-F

Wu/l_l

Exact

solu=ion

Pf

S

Pf

Pf

ORIGINAl

PROGRAM (I)

2.049

2.023 E-2

i. 302

9.652 E-2

1.090 E-;

2.049

2.022 E-2

1.301

9.655 E-2

DIFFERENCE

%(3)

0.00

0.05

0.08

0.03
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R i

R-F

Wu/FPI

Exact

solution

Pf

Pf

Pf

ORIGINAL

3.241

5. 954 E-4

7.220 E-3

6.840 E-3

NEW

PROGRAM (2)

3.241

5.966 E-4

2.447

7.195 E-3

DIFFERENCE

Z(3)

0.00

0.20

0.38

L .

R

R-F

Wu/FPI

Exac=

so lut ion

8

Pf

Pf

Pf

ORIGINAL

PROGRAM (z)

4.380

5.930 E-6

3.574

i.761 E-4

i.390 E-4

NEW

PROG_M (2)

4.380

5.951 E-6

3.578

I.733 E-4

DI FFERENCE

Z(3)

0.00

0.35

O. ii

1.62
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EXAMPLE I0

-DATA
2

FAILURE FUNCTION : g - R X1-X2-X3-X_-Xs-X6_X7_Xs_Xg_XI 0

FAILURE EVENT

VARIABLES

DISTRIBUTION

STD. DEV.

C. O. V.

CONSTANT , R

:g<O

X.1. , i - 1,2,3,4,5,6,7,8,9,10.

All 3/ are Chi-Square dis_ribu=lon

•rlth de_ree of freedo= v - 1 .

1.0

1.4142

1.4142

4,5,6.

-COMPAR/SONS OF SAFETY INDL_ AND PROBABILITY OF FAILURE , Pf

R-4

R-F

Wu/FPI

Exact

solution

Pf

Pf

Pf

ORIGINAL

PROGRAM (1)

2.595

4. 733 E-3

1.254

1.049 E-I

0.060 E-2

NEW

pROGt U,((2)

2.595

4. 725 E-3

1.254

i.050 E-I

DIFFERENCE

%(3)

0.00

0.17

0.00

0.09



C-35

R S

S

R-F

Pf

Wu/FPI

Pf

Exact
Pf

solution

ORIGINAL

PROGRAM (I)

3.815

6. 808 E-5

2.749

2. 988 E-3

5. 350 E-3

NEW

PROGRAM (2)

3.815

6. 819 E-5

2.750

2. 984 E-3

DIFFERENCE

Z(3)
,I

0.00

0.16

0.04

0.13

R ffi6

R-P

Wu/_'PI

Exact

solution

Pf

Pf

Pf

ORIGINAL

PROGRAM (I)

4.977

3.266 E-7

3.812

6. 885 E-5

8.420 E-5

NEW

PROGRA_M (2)

4.976

3. 243 E-7

3.815

6. 818 E-5

DIFFERENCE

%(3)

0.02

0.71

0.08

0.98
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L_CAMPLE I0

-DATA

FAILURE FUNCTION

FAILURE EVENT

2
: g - R -XX-X2-XS-X_-XS-X6-X7-XS-Xg-XI0-XII-XI2

-XI$-XI_-XIS-X16-X17-XI$-XIg-X20
:g<0

VARIABLES Xt , t = 1,2,3,...,18,19,20.

" All Xi are Chi-Square dlscrlbucion
DISTRIBUTION with deEree of freedom v - I .

MEAN
i |

STD. DEV.

1.0

1.4142

C. O.V. 1.4142
, m ., T

CONSTANT , R 5 , 6 , 7 , 8 .

-COMPARISONS OF SAFETY INDEX AND PROBABILITY OF FAILURE , Pf

R-5

R-F

Wu/FPI

Exact

solution

Pf

Pf

ORIGINAL

PROGRAM (i)

2.827

2. 351 E-3

0.441

3.293 E-I

2.010 E-I

NEW

pROGRAM(2)

2.828

2.340 E-3

0.440

3.300 E-I

DIFFERENCE

%(3)

O. 04

0.27

0.23

0.21
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R-6

R-F

Wul_l

Exact

solution

Pf

6

Pf

Pf

ORIGINAL

PROGRAM (I)

4.098

2.084 E-5

2.122

i. 692 E-2

i. 540 E-2

NEW

PROGRAM(2)

4. 099

2.080 E-5

2.121

1. 694 E-2

DIFFERENCE

%(3)
i

0.02

0.19

0.05

0.12

R= 7

R-F

WulFPI

Exact

solution

S

Pf

Pf

Pf

ORIGINAL

PROGRAM (I)

5.311

5. 464 E-8

3.370

3.755 E-4

3. 070 E-4

NEW

PROGRAM (2)

5.310

5.479 E-8

3.371

3. 744 E-4

DIFFERENCE

%(31

O. 02

0.27

0.03

0.29
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R-8

R-F •

WuI'FPT.

Pf

Pf

Pf

ORIGINAL

PROGRAM (1)

6.482

4. 517 E-I1

4.502

3.365 E-6

i.680 E-6

6.481

4.553 E-11

4.505

3.320 E-6

DIFFERENCE

%(3)

0.02

0.81

0.07

1.4
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EXAMPLE 11

-DATA
FAILURE FUNCTION : g - 2.5 - N

FAILURE EVENT : g < 0

Cc,,,, H log Po + AP
l + e o Po

VARIABLE DISTRIBUTION MEAN/.'_DIAN* STD. DEV. C.O.V.

N

Cc
•0
H

P0
_P

NORMAL

NORMAL

NORMAL

NORMAL

NORMAL

NORMAl

1.0

0.396
1.19

168.0
3.72
0.35

0.1
0.099
O. 1785
8.4
O. 186
0.07

0.i0

0.25

0.15

0.05

0.05

0.20

R-F

Wu/FPI

,.Mont •

Carlo (4)

Pf

Pf

ORIGINAL

PROGRAM (i)

2.439

7.363 E-3

2. 499

6.235 E-3

6.330 E-3

NEW

PROCRAM(2)

2.439

:.363 E-3

2.499

6.229 E-3

DIFFERENCE

%(3)

0.00

0.00

0.00

0.i0

(i) Developed by C. Kelly, Y. T. Wu
(2) With improvemen=s to numerical algorithms: (a) gamma function, (b) Weibull

shape parameter, (c) standard normal calf, (d) inverse normal cdf,

(e) EVD parameters
(3) Assumes new program is exact
(4) Does not have improvements in numerical algorithms
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LV,A_ LE 12

-DATA

FAILURE FUNCTION : g " N C L H3/2 - R qI

FAILURE EVENT : g < 0

VARIABLE
N
C
L
H
R

QI

DISTRIBUTION

NORMAL

NOP,MAL

NORMAL

NORMAL

NORMAL

EVD

1.0

3.85
93.4
15.0

0.7

9146.0

STD. DEV.
0.2
O. 2695
5.6O4
0.9
O. 098

3201.1

C.O.V.

0.20
0.07
0.06
0.06
0.14

0.35

R-F

WulFPI

Mon ce

Carlo (4)

Pf

Pf

ORIGINAL

PROGRAM(1)

2.715

3.309 E-3

2.651

4.019 E-3

Pf 4.043 E-3

NEW

PROGRAM(2)

2.715

3.315 E-3

2.651

4.017 E-3

DIFFERENCE

%(3)

0.18

0.00

0.05

(1) Developed by C. Kelly, Y. T. Wu
(2) With Improvements =o numerical algorithms: (a) gamma function, (b) Weibull

shape parameter, (c) standard normal cdf, (d) inverse normal cdf,

(e) EVD parameters

(3) Assumes new prosram is exact

(4) Does no= have improvements in numerical algorlchms
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EX,t_LE 13

-DATA

_-3

B-3

y-3

FAILURE FUNCTION : g - A + B X R3 + C Y S3 + D Z

TAZLURE EVENT : g < 0

VARIABLE

X

¥

Z

R

S

q

zns_zstrrzos . _a/HZDZ_,*
WEIBULL

EVD
LOGNORMAL

EVD
LOG'NORMAL
WEIBULL

10.0
5.0
9.5782 *

10.0
4.7891 *

10.0

STD. DEV. C. 0. V.
3.0
1.5
3.0
3.0
1.5
3.0

0.30
0.30
0.30
0.30
0.30
0.30

S

R-F

Pf

Wu/FPI

Pf

Monc •

Carlo (4) Pf

2.625

4.327 E-3

2.720

3.269 E-3

3.357 E-3

HEW

pm3G_ (2)

DIFFERENCE

:(3)

0.23

1.76

0.15

2.631

4. 252 E-3

2.724

3.223 E-3 1.43

(i) Developed by C. Kelly, Y. T. Wu

(2) Wiuh improvements co numerical algorithms: (a) gamma funcclon, (b) Weibull

shape parameter, (c) standard normal cdf, (d) inverse normal cdf,

(e) EVD parameters
(3) Assumes new program is exact
(4) Does not: have improvements in numerical algorlchms
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EXAMPLE 13

-DATA
R 3 SI'

i;

FAILURE FUNCTION : g - A + BX + C Y ,.4- D Z Q"

FAILURE EVENT : g < 0

VARIA3LE

X
Y
Z
R

S

q

DISTRIBUTION MEAN/MZDI_* I
WEIBULL

EVD
LOGNORMAL
EVD

LOGNORMAL
WEIBULL

10.0
5.0
9.5782

10.0
4.7891

10.0

st

st

STD. DEV.
3.0

1.5

3.0

3.0

1.5

3.0

C.O.V

0.30

0.30

0.30

0.30

0.30

0.30

a 1 3

B-4

y-5

R-F

Wu/FPI

Mon c e

Carlo (4)

Pf

S

Pf

ORIGINAL

pROGRA (l)

2.290

1.102 E-2

2.410

7.983 E-3

Pf 8.020 E-3

NEW

PROGRAM(2)

2.290

1.102 E-2

2.422

7.720 E-3

DIFFERENCE

%(3)

0.00

0.O0

0.50

3.41

(i) Developed by C. Kelly, Y. T. Wu

(2) With improvements co numerical algorithms: (a) gamma function, (b) Weibull

shape parameter, (c) standard normal cdf, (d) inverse normal cdf,
(e) EVD parameters

(3) Assumes new program is exact
(4) Does no__.!haveimprovements in numerical algorithms
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ZXAMPLZ 13

-DATA
TAILUEE FUNCTION : 9 " Z + B X Zs + C Y "S_ + D Z QS

FAZLUEE EVENT = g < 0

--VARIABLE
X

¥

Z

R
S

Q

OZS%R,Z_UTZON
I,TEZBULL
EVD
LOGNORMAL
EVD
LOGNORHAL
WZ:IBULL

I MX._/MZ:DIAN* $TD. DEY.

10.0
5.0

9.5782 *
I0.0

4.7891 *
10.0

3.0

1.5

3.0

3.0

1.5

3.0

C.O.V.
0.30

0.30
0.30

0.30
0.30

0.30

8-5

7-5

R-F

WulFPI

ORIGINAL

PROGRAM (1)

B 2.388

Pf 8.478 E-3

S 2.546

pf 5.451 E-3

Mon t•

Carlo(4)__ pf 5.776 E-3

NEW

PROGRAM (2)

2.392

8.369 E-3

2.549

DIFFERENCE

0.17

1.30

0.12

0.855.405 E-3

%(3)

(I) Developed by C. Kelly, Y. T. Wu

(2) With improvements to numerical algorithms: (a) Bamma function, (b) Weibull

shape parameter, (c) standard normal cdf, (d) inverse normal cdf,

(e) EVD parameters

(3) Assumes new program is exact

(4) Does not have improvements in numerical algorithms





APPENDIX D

Error (or Confidence) Bounds for Distribution Functions

Resulting from Statistical Sampling Error

Paul H. Wirsching

The University of Arizona





1.0 INTRODUCTION

i.i Some Definitions and Preliminary Remarks

Let Y denote the response variable.

of the random vector _ of desisn factors

D-I

Assume that Y will be a function

where Y " f(_) (1.1)

x- (x1, x2, . . .%

This function is explicit and defined only through the data base generated

by NESSUS,

(Yi; _i ) t ffi1, J (1.2)

where J is the number of solution points.

It will be assumed that the basic statistical parameters for each Xi will be

the mean and standard deviation, denoted as,

2

E(Xi) = _i V(Xi) = °i (1.3)

The vector parameter for Xi is defined as,

_i " (_i' °i) (1.4)

And the parameter for %X is a vector of K elements 0 i, for a total of 2K statistical

parameters

e - (0i, e 2, • • • eK)
(1.5)

As input to FPI, the statistical distributions of each Xi must be specified.

This includes the values of 0i.
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Consider a random sample of Xi, Xi, j ; J = l,n.

2
The estimators of vi and oi are,

n
1

The pample size is n.

(l.6)

n
A 2 . (Z.7)

The estimated parameters for Xi are

(;i, ;'i) (l.8)

and for all _,

" (_z, e2, _K) (1.9)

A

FPI constructs the distribution functlon (cdf) of Y, Fy(y,Using O, 0).

This is an estimate of the underlying cdf Fy(y), . . the function which

nature has chosen. An illustration of Fy is provided in Fig. I.i.

The distribution parameters O used to construct Fy are based on random

samples. But the estimators O are random variables themselves. There is

uncertainty in the parameters which is reflected in Fy. This uncertainty

can be described by error bounds (or confidence intervals) as illustated

in Fig. i.I. It is the goal of this analysis to develop an operational pro-

cedure for efficient estimation of these error bounds for implimentation

in FPI.

In classical statistics, 8 is considered to be chosen by nature and is

a real number whose value remains forever unknown. The estimators e are



D-3

l.O

Fy(y)

Error Bounds /

on Fy _,_ / /

/

J

J

/

/ /

/
/

/

/

,/

/

Best Estimate of Fy

Fy(y, o)

Y

Fig. I.I The distribution function of response variable Y as computed

by NESSUS/FPI
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random variables and are used for point estimates of e and for contructing.

confidence intervals on 0. But for ease of analysis of confidence bounds,

it is often convenient to use a "Bayesian approach" in which e is considered

as a random variable reflecting the fact that its value is uncertain. Con-

tinning this role reversal the estimators O are assumed to be constant,

and equal to the expected values of 0. The value of this approach lies in the

fact that if one can establish the distribution of e, then upper and lower

confidence bounds are just the appropriate percentage points.

As an example, let the mean _ of a normal variate be a random variable

having a mean of _ and standard deviation of o/u/_. A direct computation of

the upper 95% and lower 5% points produces the 90% confidence interval on _.

While deviating from classical statistics, this approach has experienced

increased popularity in recent years.
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1.2 Statement of the Problem

Consider again the cdf of Y as shown in Fig. 1.2.

A

If ® were the actual

values of 0 which nature has chosen, then we have perfect knowledge of the

inherent variability of Y. Fy would define precisely the distribution

of Y. But if 0 is a random variable, then for a given Fy, say F;, there will

be uncertainty in the value of Y which produces F'. Thus, Y will be a random

variable.

It is important to note that what is really wanted is not the uncertainty

of Y given Fy, but rather that of Fy for a given-Y, say y'. Thus, the general

goal of this analysis will be to develop a practical algorithm for computing

the error (or confidence) bounds on Fy for a given Y = y'.

1.3 Response Variable as a Function of the Parameters

To define the distribution of Y it is necessary to have an explicit

expression for Y in terms of X.

base (Eq. 1.2) as a polynomial.

This function is constructed from the data

K K

Y-f(x)-a +[ aixi+ [ bi 2o xi + [ cl xi xj (i.IO)
i-i i-i i,j

i+j

Now consider the distribution of Xi, defined by the cdf, Fi(x; O i)

and shown in Fig. 1.3. Let X i be the design point value corresponding to

y'. FPI computes a design point _ when computing Fy(y'), and in fact, must

satisfy,

y' - f(X ) (i.Ii)
%

The cdf corresponding to X i is denoted as Fi.

terms of OI by inverting the cdf

XI(O i) - Fil (Fi)

At Fi, X i can be written in

(1.12)
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l.O

I

Fy{y)

m

/

l

/
/

Fig. 1.2 Distribution of Y for a given F'

Fy(y, o)

Distribution of Y given F'

(denoted as Yo ) resulting

from uncertainty in o

Y
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1.0

Fi

Ft(X; ®i )

PDF of X
_r

given Fi

Best Estimate
A A A

Fi(x; u i, _i )

Xi

Fig. I.3. The cdf of Xi and the pdf of Xi .given Fi resulting from

uncertainty in oi
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Upon substitution of each Xi into Eq. 1.10, Y can now be expressed in

terms of

Y = S(O) (1.13)

1.4 Distribution of the Response Variable at a Given Fy

Because 0 is a random variable, Y is a random variable. And because

the uncertainty of each Xl was derived at Fi _nd Xi) , it follows that Eq. 1.10

defines the distribution of Y at F'. Let Y denote the random variable,
o

Y at F'. The mean of Yo should be "close to" y'.

Let the cdf and pdf of Yo be denoted as F and f respectively; and leto o

the mean and standard deviation of Yo be u ° and Co.

vl(e) = E(Y) = E[S(e)] = y' (1.14)

o_(e) - v(Y) = rig(o)] (1.15)

1.5 Confidence Bounds on Y
o

Let a denote the confidence level, and let YL and YU denote the upper

and lower confidence bounds. These terms are related by the probability

expression,

P'[YL _ Yo _ YU |"=

And it follows that,

P[Yo -< YL ] = Fo(YL; y'' Co ) ='1 2-a

P[Yo _ YU ] = Fo(Yu; y'! Co)= 1 +2a
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The upper and lower bounds are

YL = Fo-1 (___

YU = Fo 2

YL and YU define points on the confidence boundard as shown in Fig. 1.4.

Translating horizontal confidence bound to a vertlcal bound stat_ent,

P[Yo • YU ] = P[F < F'[Yu].

Thus, one point on the lower confidence bound of Fy

Similarly,

P[Yo < YL ] " elf • F'JYL ]

at YU is obtained.

And a point on the upper confidence bound of Fy at YL is defined.

In general, then the confidence boundaries would have to be constructed

on a point by point basis using several values of y'.

A sJ_pler scheme forl estimating the error bounds for Fy at y' using

calculations at y' only will be presented in the next chapter.
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l.O

Fy

Error

Boundaries

P[Yo < YL ] - P[Fy > F'lYL1r

f

_I -a t
2

Y PLY o > yu ] : P[Fy < F' lyu]

l - c_

jYu - 2

Y

Fig. 1.4
Error. bounds on Yo and corresponding error bounds on Fy



D-11

2.0 EXAMPLE: "FIRST ORDER" ERROR BOUNDS

2.1 Preliminary Remarks

The problem of constructing error bounds on the cdf of response variable

Y, as described in Sec. 1.0, may be too general to be practical. An example

provided in this section illustrates how an approximation to .the error bounds

can be constructed using an algorithm which is simple enough to be included

without great difficulty (we hope) in a probabillstlc structural code."

2.2 The Response Variable r Y

Assume that Y is linear in _ in the ne._ghborhood of y'.

K

Y = a + [ a i x i (2.1)
o t= 1

The goal of the analysis is to construct the error bounds on Fy at y'.

Assume that Xi is normal. The cdf of X i is written as follows noting that

01 = (_i' °i) is a random vector.

( x-_i ) (2.2)Fi(x ; Ui' °i ) " @ o t

The best estimate of the cdf of Xi is,

Fi(x ; ul , oi) = ¢ (2.3)

°I

Because Y is a linear function of normal Xi, the estimated distribution

Y in the neighborhood of y' will be normal using the parameter estimates,

Fy(y) = _y
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where
. K

. +_y ao
i=l

ai _i

K

*2 2Oy = _ a i
i=l

(2.5)

(2.6)

2.3
Properties of Y and Xi at the Design Point

r

A basic property of the design point values X used to compute Fyat y' is

y' = f(X )
%

K ,

= + [ ai Xiy ' a°
i=l

(2.7)

where Xi is the design point associated with variable Xi.
,

The cdf at Xi is,

, - Ui

Fi = ;i

(2.8)

,t *

Shown in Fig. 2.1 is the cdf of Xi and the point Xi and Fi.

,

At Fi, X i can be considered as a random variable denoted as Xoi, because it

is a function of @i = (ui' ci)"

Xoi(U i, °i) = Fil (Fi)

= °i ¢-i [F;] + Ui

(2.9)

Upon substituting Eq. 2.8, it follows that,

Xoi(_i, oi) = oi x - ui

where,

X "

°i

(2.10)

(2.n)
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1.0

F i

Fx(X)

FXoi

Ik

Xi

Fig. 2.1 The cdf of Xi showing the design polnt and corresponding F i
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Note that

E(Xoi) - X (2.12)

because E(o i) = oi, and E(_ i) = ui"

A/so note that Xot in Eq. 2.10 is a random variable because o i and _i

are random variables. The _df of Xot is shown in Fig. 2.1.

2.4 The Distribution of the Response Varlable at a Given Fy

Define F' as the value of Fy corresponding to y'

o, (2.13)

Define Y as,
O

K

= + [ aiYO ao Xot
i=l

(2.14)

K

" ao + [

i=1
ai (°i xi + V i)

Note that from Eqs. 2.7 and 2.12,

E(Y o) = y' (2.15)

Thus Y is a random variable, denoting Y at F'. It is a function of ®, and
O

It models or represents the error bound in Y at a given F'. The distribution

of Y is shown in Fig. 2.2.

The standard deviation of Y is
O

O {K 2[*2ill ai (x i) V(a i) + V(ui)]} I/2
(2.16)

And the coefficient of variation (COY) of Y is
O

C° - Oo/Uo (2.17)
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I

fYo

#

S

!

Y

Fig. 2,2 The estimated distribution function for response variable Y

and upper and lower error _ error bounds for Y
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2
If Xi is normal, then _i will be normal and oi will have an x distribution.

In general, It would be difficult to derive the distribution of Y but as
O'

indicated below, a "default" lognormal model can be assumed. As a general

purpose distribution, the lognormal can be used as an approximating model

in a variety of applications in which the exact form cannot be found.

2.5 Upper and Lower Error Bounds on Y
O

Option 1. The lognormal model for Yo" Assume that Yo has a lognormal

distribution. Upper and lower error bounds on Yo' denoted as YU and YL' and shown

in Fig. 2.2, can be derived as follows: Let a be the Confidence level. Then,

YL' for example, is related to a as,

P[Y < YL]F'] " I -u2 (2.18)

And if Y is lognormal, it follows that the lower error bound for Y is,
o

YL = _0 exp(zL6) (2.19)

where

o o

6 - n(l + C ) (2.21)

zL = standard normal variate at a

probability level of (I - u)/2

Similarly, the upper error bound for Y is,
o

YU = Yo exp(z 6) (2.22)
u

where zu is the standard normal variate at a probability level of (I + _)12.
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Option 2. The normal model for Yo" Unfortunately, the lognormal model

for Y has a serious limitation. The lognormal distribution is defined
o

only for Y • O. If the response variable has values at zero, or in the

"neighborhood" of zero, then the lognormal is not suitable. In general,

this may not be a problem, but it is not unreasonable to imagine interest

in some variable which has a zero mean. In any case, the problem can be

avoided by using a normal model for Y. The penalty may be a loss of accuracy.

The mean and standard deviation of Y are equal to y' and o (Eq." 2.16)
o o

respectively. Then the upper and lower error bounds on Yo are,

YL " ZL Oy + y' (2.23)

YU " ZU ay + y'
(2.24)

2.6 Translation of Error Bounds on Y to Error Bounds on Fy

Assuming that Y = f(_) is linear in the!neighborhood of y' and that all

Xi are normal, it follows that Y will also be normal. Error bounds on Yo

can then be easily transferred to F given y'. The scheme for doing this

is suggested in Fig. 2.3.

The standard normal variate z defines the estimated distribution of Y,

Z i

y - Uy

_y

(2.25)

where,

Fy(y) = ¢(z) (2.26)

At y' the error bounds are assumed to be parallel to Fy as shown in Fig. 2.3.

The slope of the line is

d_!. k_
dX

ay

(2.27)
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Fy z (z) z (Linear Scale)

FU Error Bounds on

Fy at y'

Y

l

Fig. 2.3 How Error Bounds on Y are Translated to Error Bounds on Fy
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And it is seen from Fig. 2.3 that

YU - Y'I
FL = % , . "

o¥

(2.28)

(2.29)

where

y' - _y
z' " . (2.30)

Oy

2.7 Concluding Remarks

These first order error bounds were derived on the basis of distributional

assumptions. It is hypothesized that these bounds are robust in that they

provide a reasonable approximation to those bounds for the general case

where y - f(X) is not linear, and X is not normal. This has yet to be proven.

A numerical example is provided in the next chapter.
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3.0 EXAMPLE: A NUMERICAL EXAMPLE OF FIRST ORDER ERROR BOUNDS

Statement of the Problem

Consider the response variable Y which is a function of R and T.

Y-R-T

There is uncertainty in the parameters of Rand T. It is required to compute

90% error bounds for Fy, the distribution function of Y, at y ' - 1 and y' - 2..

Observations on R and T have been made. The statistics are,

For R For T

n - 20 n - 20

_. Io _. 5.0

SR'2 ST'I

Thus the estimators are,

eR: (uR. _R)

eT" ;T)

°l

_R " i0

OR= 2
^

UT=5

CT= I

Solution

The calculations below follow the forms provided in the Summary

The variances of the parameters are,

2
V(_R) - sR/n - (2)2/20 = 0.20

2
V(o R) = SR/2(n - I) - (2)2/38 = 0.105
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and,

2

V(_ T) - sT/n = 1/20 - 0,05

V(o T) - s_/2(n. - i) - 1/38"= 0.026

The design points at y' - 0 and y ' = 1 are defined in Fig. 3.1. Thus, at

A

R* - ]_R 6.8 - i0

r* = . = 2 = - 1.6

oR
^

T* - uT 5.8 - 5
t* = " ffi + 0.8

" 1

°T

. The mean of Y is
The random variable Y given F' is denoted as Yo o

and the standard deviation of Y is,
o

°o = [(r*)2 V(°R) + V(UR) + (t*)2 V(°T) + V(UT)]I/2

= [(1.6) 2 (1.05) + (.2) + (.18) 2 (.026) + .05] 1/2

o = 0.73
o

OPTION 1 (Lognormal model for Y )
o

The COV of Y is,
O

°o °o O.73
Co = -- I-- = 0.73

_o _T 1

and

6 - V_£n(l + C 2)
o

- v_£n(l + .732 ) = 0.654
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The median of Y
O

= y' 1= -- = 0.80
1.23

o /1+C 2
O

The estimated mean and standard deviation of Y,

A _ A

_Y = _R- UT = 10 - 5 - 5

/A2 _2

Oy = /_R + _T

22 12= = = 2.24

For 90% error bounds, (i - a)/2 - 0.05, and (i + a)/2 = 0.95.

z L - - 1.64 zU - + 1.64

The upper and lower error bounds for Y
O _

"b

YL " Yo exp(zL_) " 0.80 exp (-1.64 x .654)

= 0.273

'b

YU = Yo exp(Zu_) = 0.80 exp (1.64 x .654)

= 2.33

The cdf of Y at y' - 1 is,

F' - #(z')

where y' - Uy
Z ! B ^

Oy

1-5
-- = - 1.787
2.24

Then, F' - _(-1.787) = 0.037
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And finally the error bounds on Fy at y' - I,

F L - ¢ '

Oy

- ¢(- 1.787 - 2.332.24- 1)

- 0.0086

FU " ¢(z' + Y'- YL)

Oy

" <-1 787 + 1- 0.273 )" 2.24

- O. 072

These bounds are plotted in Fig. 3.2.

OPTION 2 (Normal model for Y )
o

When the normal model (Option 2) for Y
O

bounds are

" + Z'
YL zL °o

is employed, the upper and lower

- (- 1.64)(0.73)+ i. - - 0.20

YU " Zu °o + y

- (1.64)(0.73) + 1. - 2.20

Employing the forms as above for FL and FU,

FL = 0.i0 Fu - 0.105

The Option 2 bounds also plotted in Fig. 3.2 do not agree well with the

Option 1 bounds. Brief commentary on these differences is provided below.



D-29

0

• or,'rJo,,_i (L.N-yo)



D-30

Now compute the error bounds at y' = 2. Only those calculations which

differ from above will be shown in the following.

The design point (See Flg. 3._

r* = - 1.2 t* = 0.6

o = 0.649 (Eq. )
O _

2-5
z' =_=- 1.34

2.24

OPTION 1

OPTION 1

F' = 0.090

C = O. 324
O

6 = 0.316

%

Y = 1.90
o

YL = 1.11

YU = 3.23

FL = 0.029

FU = 0.172

YL = (- 1.64().649) + 2. = 0.935

YU = (1.64)(.649) + 2. = 3.06

FL = 0.035

FU = 0.193

The error bounds are plotted on Fig. 3.2.
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Some Comments

The differences in the first order error bounds reflect concerns by this

author regarding the general use of the lognor_al model for Yo" As yW _ O,

it is noted that C _ - and the model "blows up.
0

However, the lognormal may be a more accurate model for response vari-

ables which are guaranteed to have positive values. On the other hand,

the normal Y model avoids any mathematical difficulties In the neighbor-
0

hood of y' = O. And because (a) the normal and lognormal error bounds

ate "reasonably close" in the region where y' > 0 and (b) the normal model

is easier to use, it is suggested that the normal be used as a first order

approximation to the error bounds.
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1.0 INTRODUCTION

i.I Introductory Remarks

Monte Carlo traditionally has been considered co be a "last resort"

method for solving a probability or statistics problem because of high

cost relative to accuracy of the results. However, in recent times a

combination of the development of new efficient numerical techniques

and new digital computing hardware have made Monte Carlo more attractive.

Presented in this report are descriptions of the following Monte

Carlo programs dedicated to probabilistic structural analysis.

i. "Conventional" Monte Carlo

2. Variance reduction using antlthetic varlates

3. To be added later

4. To be added later

Provided in the following sections a_,e-descriptions of how each method

works as well as a comprehensive study of the performance of each.

1.2 The Basic Problems

Consider the random variable Z as a function of the random vector

X - (X1 X2, . X )% ' n

Z - h(_) (l.l)

The distribution of each Xi is known. It is assumed that all X i are

mutually independent.

One problem of probabilistlc mechanics and design is to compute a

point probability,

p - P[h(_) f h o] (1.2)
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For example, p could represent the probability of exceedance of a deflec-

tion or perhaps the probability of failure.

The second problem is the extension of the first to the construction

of a cumulative distribution function.

Fz(Z) = P[h(_) _ z] (1.3)

Clearly the two problems are identical, but optimal strategies for analysis

may differ. For example, to construct the CDF, one option would be to

obtain point estimates of FZ at selected values of z, then fit a curve

through the points. A second option would be to construct an empirical

distribution function from a large sample of Z i (See Sec. 2.4).

1.3 Random Samples

The basis for Monte Carlo simulation is a standard uniform distribu-

tion random number generator. Methods of generating uniform variates are

generally based on recursive calculations of residues of modulus m from a

linear transformation [ I]. Most large computers have such a generator

as a library function.

A variety of methods can be employed to generate varlates from the

distributions. Presented in Appendix A are algorithms used for the program

presented herein.
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"CONVENTIONAL" MONTE CARLO

Point Probability Estimates by Conventional Monte Carlo Using the

Bernoulli Parameter

Consider a function, h(_), where _ is a vector of random variables,

all having known distributions. It is required to compute,

p = P[h(_) _ ho] (2.1)"

The problem can be reformulated as

p = P[g(_) _ O] (2.2)

where g(X), called the "performance function," is

- - h
0

(2.3)

In a direct Nonte Carlo scheme, a sequence of K random vectors,

_i' can be sampled, and in turn, a sequence of gi; i = I, Z computed.

[iYi = if gi - 0

if gi > 0

Thus, Yi has a Bernoulli distribution

P(YI " I) - p

Define

(2.4)

(2.5)

P(YI " O) - I - p

where the Bernoulli parameter p is the same p as in Eq. 2.1.

The maximum likelihood estimate (MLE) of p is [ 5],

K

i !iYiP "Ki
(2.6)



E-4

<

But _Yi is Just the total number of gi - O, denoted as N .
0

Just the fraction of the giVs less than zero

A N
0

p'_-

Thus, p is

(2.7)

A flow diagram of conventional Monte Carlo is given in Fig. 2.1.

A listing of a computer program for conventional Monte Carlo employing

the Bernoulli parameter is provided in Appendix B and an example of the

output is shown in Fig. 2.2.

2.2 Confidence Intervals on the Bernoulli Parameter/ p

A

The MLE of p is p. Because of sampling error, p is only an estimate,

^

and the key question is how close is p to p. Confidence intervals are

described below. Note that these confidence intervals refer to

sampling error of the Monte Carlo process, not uncertainties associated

with the parameters of X..
i

Consider p,

K

1 ! y. (2.8)

The mean and variance of p are [ 5]

E(p) - p (2.9)

V(;) = p(l - p) (2 i0)
K

By the central limit theorem, p will approach a normal distribution as

K - ®. Confidence intervzls for p are constructed using normal distribution

mathematics,



(1)

(2)

Define:

(a) z(_)

(b) Distribution, and

(u, c) for all Xi

|

Obtain random sample I
I

_i = (Xl' X2' " " " Xn) I
I

(3) 1 Compute g(Xl) i

+
I Repeat (2) and (3) to obtain I

(4) I sample of g(Xi); i- i, K I

E-5

POIXT PROBABILITY

ESTImaTE

Count fraction I

of g(_i ) < 0 'I-_"

l

CONSTRUCT CDF

I Sort g(x) to define l
empirical CDF I

+
!

Fig. 2.1 Flow diagram of conventional Monte Carlo
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MONTX CANLO SOLUTION

LIMIT STATE FUNCTION : R=S

SAMPLE SIZEI K= 100

NUMBER OF RANDOM VARIABLES, N= 2

RANDOM VARIABLES

VARIABLE DISTRIBdTION MEAN STD DEV

R WEIBULL .20000E+_2 .20000E+01

S EVD .10000E÷02 .20000E+DI

STATISTICS OF Y : ..cO

MEAN = .10018E+02

STD DEV = .27499E+01

MEDIAN = .gbbObE+01

COV = .27450E+OD

NUMBER OF NEG Y VALUES= 0.

Note that Y is the same as g(X);

these are the statistics on the

limit state function.

[--This is p
!

PERCENT OF TRIALS= •00000_

Fig. 2,2 Output of conventional Monte Carlo program. (No sorting requested)

Performance function; g(R,S) - R - S
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P - z_12 / K - p - p + za/2 ,t K
(2.1l)

where p is substituted for p in the variance. The probability that p will

be bounded by the lower and uppper limit is I- _, where = is the confidence

coefficient, zo/2 is the standard normal variate corresponding to _/2.

Commonly used values

.I0

.05

.01

za/2

1.64

1.96

2.58

The confidence interval of Eq. 2.11 relies on the central limit theorem

and must be considered as only an approximation for finite K.

the approximation is considered "valid" if Kp • 5 [ 5].

[

Eq. 2.11 can be written as,

In general,

p (I - Y) - p - p(l + Y) (2.12)

wher e,

K
P

Eq. 2.13 is displayed in Figs. 2.3 and 2.4 for 90% and 95% confidence

intervals respectively. These figures show the sample size requirements

for confidence intervals of a given width and level. For example, if the

point probability is expected to be about 10-3, and it is required to have

D within _ 10% of p with a confidence of 90%, then it is necessary to have

a sample of size K • 200,000.
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2.3 Computer CPU Time on the CYBER 175

The conventional Monte Carlo program of Appendix B was exercised on

several problems using all five of the available distributions. CPU time

was recorded for each program. It is assumed that this conventional Monte

Carlo program will provlde an upper bound to CPU time relatlve to other,

and more efficient, Monte Carlo schemes. The CYBER 175 is the mainframe

computer at the University of Arizona, and all results relate to this machine.

Recorded CPU time for several examples was consistent. Compilation and

loading time for all cases are shown in Table 2.1. These are average values,

but there was little variation.

Execution CPU time essentially depends only upon the number of variables

and not on distributional forms or performance functions. Fig. 2.5 illustrates

the CPU execution time per variate as a function of sample size K. Total CPU

time is obtained by adding compilation and loading time to execution time.

A sample program was run on both the CYBER 175 and the VAX 11/780 for

a time comparison. The results shown in Table 2.2, reaffirm the fact that

the VAX is too slow for production Monte Carlo.

To get an idea of computer charges for running _nte Carlo, Fig. 2.6

is provided. This is the commercial rate of the UA CYBER 175 for low priority

jobs.
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Table 2.1

Compilation and Loading CPU Time for Conventional

Monte Carlo on CYBER 175 Program

CPU Time (sec)

Compile 1.0

Load 0.25

Table 2.2

Comparison of CPU time Between CYBER 175 and VAX 11/780

,
for one Example Problem

Time (sec)

CYBER 175 VAX 11/780

Compile 1.0 14

Link 0.25 5

Execution 7.5 30

8.75TOTAL 49.0

There were 2 variables; K - 30,000.



E-12

I0.0

1,0

0'I

_T= Cp_I
- I"_-IE

($EC)
w

n

m

_" 10-4)KT(SEC) = (1.4 x

R

/
/

/

/

/

1 . J l I j l

IO: I0_ I0q" Io_

5AMPLE _IZF.. , K

Fig. 2.5 CPU execution time per variate on CYBER 175 as a

function of sample size K.



E-13

_o

5

Z

COST, D

p = ._,o-_6 "I".

I°I ,

Fig. 2.6 Cost in dollars ($), D, as a function of time for

the UA CYBER 175; lowest priority.
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2.4 Comparison of Monte Carlo to Wu/FPI

Computational efficiency was the motivation for the development of the

Wu/FPI program. It is generally known that Monte Carlo is inefficient

relative to a fast probability integration method. An attempt is made here

to quantify differences in computer time between conventional Monte Carlo

and Wu/FPI. Because the cost of conventional Monte Carlo depends upon the

accuracy and probability level required, a general direct comparison can't

be made. However, an example presented in the following clearly demonstrates

the high cost of Monte Carlo.

Suppose that it is required to provide a Monte Carlo solution such

that the 90% CI for p is within f 10% of p. The CPU execution time for the

CYBER 175 can be computed from FiEs. 2.3 and 2.5 for a given probability

level, p. This CPU time is shown in Fig. 2.7 as a function of the number

^

of variables in g(_) for p = 10 -3 and 10-4 . At these levels Monte Carlo is

two to three orders of magnitude more expensive than FPI. And the FPI

sclution is likely to be more accurate. Moreover, for smaller tall proba-

bilities FPI gets no more expensive while Monte Carlo will break the bank.

2.5 Estimating the CDF of a Random Function

2.5.1 The Empirical CDF

Conventional Monte Carlo provides capability for estimating the complete

distribution function of a function of random variables. Define the random

variable Z, as a function of the random vector _.

Z - Z(_) (2.14)
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I00.000

I0,000

1000

I00

I0

I-0

0-1
0

CPU EXECUTION
TIME (,S_OND)

R

CONVENTIONAL_: 0.10
_ MONTECARLOCI : q 0 %

,i

m |

, ] , 1 , 1
I0 20 =;O

NUMBER OFVARIABLES

Fig. 2.7 Comparison of Monte Carlo and WulFPI CPU time

15
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A random sample of Xi; i = I, K is used ¢o generate a random sample of

Zi; i = i, K. In turn, an empirical distribution function of Z can be

constructed using methods of probability ploctlng. The empirical CDF,

denoted as Fi, will be an estimate of the CDF of Z, Fz(z).

Various forms of Fi have been proposed [ 3, 4, 6 ].

Fi below correspond to Z(i ) where Z(i )

random vector _. Thus, Fi _ Fi(Z(i)).

i - 1/2
i. Hazen; Fi = K

i
2. Gumbel ; Fi = K + 1

i-0.3
3. Median ranks Fi =' n+0.4

The values of

is the ith smallest value of the

Through prior experience on extensive Monte Carlo simulation, this author

has found that the Hazen formula consistently provides "good estimates"

of FZ.

2.5.2 The Sort Routine

To construct the empirical CDF it is required to sort the random

sample _ to obtain an ordered sample to" Let Z(i ) denote the ith smallest

value.

The routine used in this Monte Carlo code is program QUICKSORT which

is considered to be the fastest available [ 7 ]. A description of QUICKSORT is

given in Appendix C. The Fortran statements for this code are provided

in the program listing in Appendix B .

CPU time requirements for the sor£ routine can be relatively large for

large samples. Fig. 2.8 shown CPU execution times as a function of the

size of the _ vector.
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lOOC --

i0.0--

1.0I

O.I--

SA_PLF.. _ZE, K

Fig. 2. 8 CPU sort time (executlon)as a function of sample

size for the CYBER 175.
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2.5.3 An Example.

Shown in Fig. 2.9 is a table of the sorted vector Z(i ) and the corres-

ponding Fi for the example of Fig. 2.1. This is the data required for

plotting. The empirical CDF of Fig. 2.10 was done by hand, but in general

such graphs can be automated using a computer graphics package,
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I - 1
I - 6

I ,, 11
I - 16
I - 21
I = 26

I - 3i
I = 36

I - 41
I " 46

I = 51
I - 56

I -- 61
I = 66

I = 71
I -- 76
l = 81
I = 86

I = 91

I " 96

I :m 1

I = 6

I = 11

I = 16

I = 21

I = 26

I = 31

I = 36

I = 41

I = 4b

I = 51

I = 56

I = 61

I = 66
I = 71

I = 76

I = 81

I = 8b
I - 91

I ,, 96

SORTED VALUES OF Z AND THE EMPIRICAL CDF

.32159E+01
.48457E+01
.59944E+01
.69827E÷01
.76|56E+01
.87304E+01
.90619E+Ol
.9281bE+01
.95862E÷01
.10054E÷02
.10376E÷02
.10712E÷02

.10856E+02

.11191E+02

.11730E+02

.12122E+02

.12667E÷02

.12993E_02

.13273E÷02

.13943E÷02

.4087bE+01

.48984E+01

.6042bE+01

.70597E+01

.79653E+01

.87?09E+01

.90971E+01

.92823E+01

.95993E÷01

.10115E÷02

.10581E÷e2

.10771E÷02

.10874E+02

.11246E+02

.11760E+02

.12140E+02
.12803E+02
.12963E+02
.13297E÷02
.14797E+02

.42831E÷01

.5058bE+01

.b6202E+01

.70685E_01

.83861E÷01

.87964E+01

.91454E÷01

.93259E÷01

.96380E+01

.10137E+02

.10607E+02

.10773E÷02

.10958E-02

.11344E+02
.11802E+02
.12284E+02
.12844E+02
.13042E+02
.13361E÷02
.14983E+02

.44764E+01

.56150E÷01

.68500E÷01

.70780E+01

.84534E+01

.88850E+01

.92372E+01

.95770E+01

.98157E+01

.1025bE÷02

.10631E+02

.10791E+02

.11125E+02

.11409E+02

.11912E+02

.12413E_02

.12867E+02

.13131E+02

.13638E÷02

.15123E÷02

.50000E-02
,55000E-01

.10500E+00
.15500E_00
.20500E÷00
.25500E÷00
.30500E+00
.35500E+00
.40500E+00
.45500E÷00
.50500E÷00
.55500E+00

.60500E÷00
.65500E÷00
.705_0E÷00
.75500E÷00
.80500E÷00
.85500E÷00
,90500E÷00

.95500E÷00

.15000E-01
.65000E-01

.11500E+00
.16500E÷00
.21500E+00
.26500E÷00

.31500E÷00

.36500E+00

.41500E+00

.46500E+00

.51500E+00

.56500E+00

.61500E+00
.66500E÷00
.71500E÷00
.78500E+00
.81500E÷00
.86500E+00
.91500E+00
.96500E÷00

.25000E-01

.75900E-01

.12500E÷00

.17500E_00

.22500E+00

.27500E+00

.32500E+00

.37500E÷00

.42500E+00

.47500E÷00

.52500E÷00

.57500E÷00

.62500E+00

.67500E÷00

.72500E+00
.77500E÷00
.82500E_00
.87500E+00
.92500E÷00
.97500E-00

.35000E-01

.85000E-01

.13500E_00

.18500E+00

.23_00E÷00

.28500E+00
.33500E÷00
.38500E_00
.43500E+00
.48500E+00
.53500E÷00

.58500E÷00
.63500E÷00
.68500E+00
.73500E÷00
.78500E÷00
.83500E+00
.88500E+00
.93500E÷00
.98500E+00

.45626E+01

.59102E+01

.69210E+01
.71004E+01
184720E+01
.89137E+01

.92557E÷01

.95829E+01

.98782E+01

.10370E÷02

.10644E+02

.1084bE_02

.11162E÷02

.11616E÷02

.11933E+02

.12573E+02

.12873E_02

.13142E+02

.13709E+02

.15305E+02

.45000E-01

.95000E-01

.1450UE+00

.19500E÷00
.24500E_00
.29500E+00
.34500E+00
.39500E+00
.44500E+00
.49500E+00
.54500E+00
.59500E+00
.64500E+00
.69500E÷00
.74500E_00
.79500E_00
.84500E_00
.89500E÷00

.94500E÷0_

.99500E÷0_

2.1
Fig. 2.9 Sorted Z. and corresponding empirical CDF for the example of Fig.

I
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Fig. 2.8 Empirical CDF of g(R,$) of Fig. 2.1.

The points are given in Fig. 2.7; K-IO0
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3.0 THE VARIANCE REDUCTION METHOD

3.1 Preliminary Remarks

The variance of Monte Carlo estimators can be reduced, relative to

straightforward sampling of Chapt. 2.0, by appropriate operations with

negatively correlated samples. Ang and Tang [ 1 ] present several examples

which demonstrate dramatic improvements in efficiency realized by variance

reduction methods.

A variance reduction computer program, tailored for structural

mechanics analysis by providing point probability estimates of functions of

random variables has been developed. The listing is given in Appendix D.

To assess performance, the program has been exercised on several examples.

Results presented in Section 3.6 show dramatic improvement of variance

reduction over conventional Monte Carlo in some cases. In other cases,
,w

i

the improvement is only modest. Some general conclusions are presented

in Section 3.7. For the most part however, for a given problem it is dif-

ficult to predict how much improvement one can expect with variance reduc-

tion.

3.2 The Essence of Variance Reduction

The goal of analysis is to estimate

p- < ho]

Suppose p and_' are two unbiased estimates of p.

a point estimate of p is described in Sec. 3.4below.)

may be combined to form another estimator

g(p + )

(3.l)

(The method for obtaining

The two estimators

(3.2)
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The expected value Of PE is,

,,(_)- ½[E(_,)+ E(_,')]- p (3.3)

which means that p is an unbiased estimator.

The corresponding variance is

- ¼[v(_)+ v(_')+ 2 Coy (_,,_,)]V(p) (3.4)

If p and p' are statistically independent, for example, based on two separate

and independent sets of random numbers,

1 [V(_) + V(_')] (3.6)v(_) -_

Thus, the accuracy of the estimator p can be improved over that of the

independent case if p and p' are negatlvely correlated. Ang and Tang cite

several examples (no structural analysis) where variance reduction can

provide a dramatic improvement in efficiency of probability estimation [ 1 ].

An estimate of p is obtained by several samples, Pl; i = I,K.

(3.7)

all Pi are independent. Note that PE will approach normality as K + -

as a consequence of the central limit theorem.

The mean and variance of PE are,

E(PE) - p

2
where o

P

V(pE) = o2/K
P

is estimated as,

2
S
P

K
1

K--I i!l(Pi - PE )2

(3.8)

(3.9)

(3.10)
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3.3 How to Obtain Negatlvely Correlated Samples

Suppose that the uniformly distributed varlate u I is used to generate

a number x i from a given distribution (See Appendix A). Then the uniform

t such that x i and x' will be negatively' = 1 - ui will produce an x i ivariate u i

correlated. The ui are called "anti,be,it" varlates.

, is used to generate p, and 1 -And in general, if uI u 2, . . • un u I,

1 - u2, . i - Un Is used to generate p', then p and p' will be nega-

tively correlated.

Such a procedure works well when the integral transform is used, e.g.,

Weibull, EVD. One uniform varlate u i is used to generate one x i. But

where Box-Muller is used to generate normal" variates, two u i are chosen

(See Appendix A). While the resulting x i and x i will be negatively correlated,

the correlation coefficient will not be -I.0. An improvement can be made

by choosing x'._as a "mirror image" of x i in the distributions.

be done by

This can

where u is the mean of X.

3.A How to Obtain Point Probability Estimates

3.4.1 The Two Variable Case

The structural reliability problem in which p is the probability of

failure will be used to illustrate how p and p' are obtained. Consider

the design case where the two variables are R (strength) and S (stress).

Estimate p, where

p - P[R - S _ O] (3.12)

x[ = 2u - x i (3.11)
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Both R and S are random variables whose density funcclons are shown

in Fig. 3.1. First S, having been identified as the variable having the

largest variance, is the "reference." A random variate Ri is sampled from

the other factor, R. An estimate of p is

Pi = P(S • a i)

= i - FS(R i) (3.13)

where FS is the CDF of S.

Ic should now be apparent why sampling is done on the smallest vari-

ance term. p is a "good" estimate of p if the distribution is narrow, and

is exact as o R * O.

!

Now the antithetlc variate Ri is sampled as described above. Because

it is negatively correlated to Ri, its position relative to Ri will be as

shown in Fig. 3.2. Then,

Pi''= P(S > RI)

- 1 - Fs(R _) (3.1_)

and the ith estimate of p is

1
" 7 + (3.15)

As a second example, consider again the case where R and S are the basic

variables, but now where o R < oS. In this case, R would be the reference

!

variable. Random points S i and the antithetic variate S i are sampled from

$. The estimates now are,

Pi = FR(Si) -(3.16)

Pi_' = FR(SI)
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The "Reference" Variable.

PDF of S, fS (maximum

variance variable)

!

PDF of R, fR

I
/

/

/

Fig. 3.1 Estimate of p using one point sampled from the minimum

variance variable.
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PDF of S, fs

I

1

y
Pi = P(S > R i)

PDR of R, fR

Pi''= P(S > R_)

Fig. 3.2
Estimates of p using a point Ri sampled from R and the

!

antithetic varlate of Ri, denoted as Ri
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Thus, it is seen that the variable type (stress or strength) must be identi-

fied to obtain the proper form for computing estimates.

Fig. 3.2 shows why negatively correlated variables tend to provide

• ' combine togood estimates Being on both sides of a distribution, Ri and Ri

produce an "average" estlmateof p.

3.4.2 The General Case

In general the performance function g(_) = h(_) - h is a non-linear
, s O

function of several variables. The method of obtaining a point estimate of

p is an extension of the scheme for two variables.

The reference variable is defined, not as the one having the maximum

variance, but rather the one having the maximum impact.

g=bR-S

For example, if

(3.17)

and oR = OS/2, clearly the random variable, _R1 = 5R will have a larger vari-

ance than S. Thus, we say that R is the maximum impact variable.

In general, the maximum impact variable can be found by estimating

_g/_X i for each Xi. The maximum impact variable, denoted as XM, is that

XI for which I_g/bXi] is the largest.

The sign of _g/_X i identifies variable type; stress if (+) and strength

if (-). As indicated above, the "type" of _ must be known to choose the

appropriate form for estimating p (e.g., Eqs. 3.13 and 3.16).

The estimates p and p' proceed as follows. Sample all variables but

XM.. Let g(_) = O, and solve for xM (this is done by the secant method

in the program).

XM , h(_o ) (3.18)

where _o is the vector of sampled _ minus X_.
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The estimate of p is,

- I FxH(XM) if XH is a strength variable

f
1"- FXM(X M) if XM is a stress variable

To obtain p', the antithetic vector _ of _o is used in Eq. 3.19.

(3.19)

3.5 Confidence Intervals on p

Noting that PE is normally distributed, approximate 1 -a confidence inter-

vals on p can be constructed as [ 5 ],

zcz/2 sp z<z/2 Sp
<P< PE +PE

(3.20)

or,

PE(I-Y) < P < PE(I + 7) (3.21)

where,

z /2 = standard normal variate (absolute value) at

probability level a/2.

za/2 C p
(3.22)

Cp = Sp/pE (3.23)

The UA variance reduction program chooses K to produce a specific

confidence interval. For example, if you want to sample until the 95%

+
confidence intervals are - i0% of PE'

= 1.64 (3.24)
Y = 0.i0 z/2
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and solving Eq. 3.22 for K,

2

K • za/2 Cp C2= 269 (3.25)
Y P

To find Cp, an initial sample of K = i000 is chosen and an estimate

of Cp is obtained. Then if K < I000 in Eq. 3.16, the process is terminated

with narrower confidence intervals than requested. If K • I000, the. program

will continue to sample to that value.

3.6 The Variance Reduction Monte Carlo Program

A flow diagram which outlines the logic of the variance reduction

program is provided in Fig. 3.3. Sample output of the program is shown

in Fig. 3.4 with some commentary.

Two versions of the program have been developed. An interactive version

(IVARED) runs on the IBM PC/XT. Program VARED runs on the VAX or CYBER 175.

A listing of VARED is given in Appendix D.

3.7 Examples of the Performance of VARED

Twelve examples of the use of VARED co produce point probability estimate

are provided in Tables 3.1 through 3.12. Point estimates by VARED are compared

to the exact solution (closed form or POFAIL) if available. The exact

solution, provided by program POFAIL, is employed for performance functions

involving two variables. For larger problems, Wu/FPI is used. For the

VARED solutions, 95% confidence intervals (o = 5%) are specified along

with X = 0.i0.

To compare variance reduction with conventional Monte Carlo, sample

size requirements and CPU time for the latter are extracted from Figs. 2.4 and

2.5 and are presented in the tables.
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(I)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

De f £ne

(a) s(_)

(b) Distribution, and (u, o) for a11 X i

(c) 1 - a; confidence lave1

(d) YI vidch of confidence bound

(a) K, the initial sample size

I-- iIdentify maucimtm impact varlable, XR

Sample a random vector _i

(ali variables except XH)

( _"_t" ;. I
,

co.,u=.P(I

I _epe.tsteps(3>_hrou_h(7_;i- I,KI

?

--Compute p£ and I-a confidence bounds.

÷
Are confidence bounds wlth pE(1 - Y)?

YES HO

Print Results t

(1o)

(ll)

Compute Ko, the additional samples

K required to bring i - a confidence

bounds vithln _(I - Y)

Repeat steps (2) throush (7) for i - I, K o

Fig. 3.3 An outline of the variance reduction Monte Carlo program



Fig. 3.4 An example of the output of the variance reduction Monte Carlo

Program with commentary

MONTE CAELO SOLUTION
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LIMIT STATE FUNCTION : G'R-DSQRT(3@O.*P**2+I.?2.T**2)

SAMPLE SIZE = 1000

NUMBER OF RANDOM VARIABLES = 3

CONFIDENCE INTERVAL = 95.00 %

GAMMA - .10

MAX. IMPACT VARIABLE = X( I)

VARIABLE TYFE IS STRENGTH

RANDOM VARIABLES

This value is arbitrary;

it is the size of the

first sample used to

estimate the total"

required sample size, K

JEnsures that 95% confidence intervals

on p will be within -+ 10% of the

estimator, PE

VARIABLE DISTRIBUTION MEAN STD DEV

R WEIBULL .48000E+02 .30000E+01

P LOG .98700E+00 .16000E+00

T EVD .20000E+02 .20000E+01

ESTIMATE OF P = .16043E-02

95.00 % CONFIDENCE INTERVALS ARE

PL = .11725E-02 RU = .20=60E-02

I This is the first estimate of p

Note that 95% confidence

intervals exceed _ 10%.

Thus, a larger K is

required. (See below)

STATISTICS OF P :

MEAN = .Ib043E-02
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STD DEV =

MEDIAN =

COV =

.69662E-02

.36004E-G3

.43422E+01

K FOR GAMMA = • 10 IS 7244

ESTIMATE OF P = .1803BE-B2

95.00 % CONFIDENCE INTERVALS ARE

PL = .15509E-02 PU =

STATISTICS OF P :

MEAN = .18348E-02

STD DEV = .11456E-01

MEDIAN = .29017E-03

COV = .62436E+01

Based on the first sample of K = I0(

this is the total K required for th,

desired Confidence intervals. K is

computed from Eq. 3.25 which requirf

Cp. This is why the first sample o_
1000 is taken.

.2B550E-B2

Note that the confidence intervals do not quit

meet the specifications. This is because the

original estimate of C = 4.34 was small relal
P

to the improved estimate of C = 6.24
P

DO YOU HAVE ANOTHER DATA SET ?(Y/N)

Note: The size of the sample required K depends upon C (Eq. 3.25).
P

In this problem C is relatively large implying that a relatively
P

large K is required. This same problem is presented in Table 3.7.
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Table 3.1 Example of the Performance of a Variance Reduction M_nte Carlo

Program; EXAMPLE i

DEMONSTRATING THE PERFORMANCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGRAM

EXA._E i

PERFORM_CE FUNCTION : _=_--3

Variable

C

Type Mean/Median* Std. Dev./ COY

N ,

N .

RESULTS:

Exact (a)

Wu/FPI

Monte Carlo

Variance

Reduct ion (d)

Monte Carlo

Conventional

(Bernoulli

parameter)(e)

Probability
of Failure

I,oFI E

18 E-z

Total

tpU_Time(b)

Sample

Size, K (c)

Notes:

(a) Exac= value using POFAIL if two variables. If more than two,

Wu/FPI is used; the exact should be within 5% of this value.

(b) CTBER 175

(c) The number of Pi for variance reduction and the number of Zi for

conventional. The values are not directly comparable.

(d) 95% confidence intervals within ± 10% of PE

(e) Same confidence interval as variance reduction.
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Table 3.2 Example of the Performance of a Variance Reduction Monte Carlo

Program; EXAMPLE 2

DEMONSTRATING THE PERFORMANCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGRAM

EXAXP_E

PERFORMANCE FUNCTION:

Variable

R

S

Type

LN
LN

 =R-5
Mean/Median* *Std. Dev./ COV

-_0,

20.

* " 0.2

0.2. -_

RESULTS :

:xac c (a)

_u/FP I

Monte Carlo

Variance

Reductlon( d )

Honte Carlo

Conventional

(Bernoulli

parameter)(e)

Probability

of Failure

5.07ZE-4-

Total Sample

CPU- T.i.me(b) Size, K (c)

_,,zz F_.G

Notes:

(a) Exact value using POFAIL if two variables. If more than two,

Wu/FPI £s used; the exact should be within 5% of this value.

(b) CYBER 175

(c) The number of Pi for varlance reduction and the number of Zi

conventional. The values are not directly comparable.

(d) 95% confidence intervals within ± 10% of PE

(e) Same confidence interval as variance reduction.

for
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Table 3.3 Example of the Performance of a Variance Reduction Monte Carlo

Program; EXAMPLE 3

DEMONSTRATING THE PERFORMANCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGRAM

EXA._LE L_

PERFORHA_CE FUNCTION :

Variable Type Mean/Median* *Sod.. Dev. / COY

F< _!EI. 4,5 o,_5

$ _RE. 9,0 o,_o

RESULTS :

Exact(a)
Wu/FP I

Hon_e Carlo

Variance

Reduction( d )

Hon_e Carlo

Conventional

(Bernoulli

parameter)(e)

Probability

of Failure

Tocal

CP[;: Time (b)
Sample , ,
Size, K tc)

/e"

Not es :

(a) Exact value using POFAIL if two variables. If more than two,

Wu/FPI is used i the exact should be within 5% of this value.

(b). CYBER 175

(c) The number of Pi for variance reduction and the number of Zi for

conventional. The values are not directly comparable.

(d) 95% confidence intervals within ± 10% of PE

(e) Same confidence interval as variance reduction.



E-36

Table 3.4 Example of the Performance of a Variance Reduction Monte Carlo

Program; EXAMPLE 4

DEMONSTRATING THE PERFORMANCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROG_

EXA_fPLE

Mean/Median*

PERFORMANCE FUNCTION:

Variable Type Sod. Dev./ COY

RESULTS:

Exact (a)

Wu/FP I

Monte Carlo

Variance
Reduction( d )

Monte Carlo

Conventional

(Bernoulli
parameter)(e)

Probability
of Failure

11E-2

Total
CP0=Time (b)

Sample
Size, K (c)

Not es :

(a) Exact value usln$ POFAIL if two variables. If more than two,

Wu/FPI is used; the exact should be within 5% of chls value.

(b) CYBER 175

(c) The number of Pl for variance reduction and the number of Zi for

conventional. The values are not directly comparable.

(d) 95% confidence intervals within ± i0% of PE

(e) Same confidence interval as variance reduction.
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Table 3.5 Example of the Performance of a Variance Reduction Monte Carlo

Program; EXAMPLE 5

DEMONSTRATING THE PERFORMANCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGRAM

EXAk'PLE ,5

PE_/OBMANCE FUNCTION :

Variable Type

_:R-5
Mean/Median* *Sod. Dev./ COV

R :,V_; 2O. 2.0
b J m ,

£ IO.

m ,, ,

, ,, j

RESULTS :

_xact (a)

_u/FPI

Hon_e Carlo

Variance
Reduction( d )

Probability
of Failure

Monte Carlo

Conventional

(Bernoulli

parameter)(e)

Sample , ,
Size, Ktc)

tl56 _

i _'>>;) c,

Notes:

(a) Exact value using POFAIL if two variables. If more than two,

Wu/FPI is used; the exact should be within 5% of _his value.

(b) CYBER 175

(c) The number of Pi for variance reduction and the number of Zi for

conventional. The values are not directly comparable.

(d) 95% confidence intervals within ± 10% of PE

(e) Same confidence interval as variance reduction.
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Table 3.6 Example of the Performance of a Variance Reduction Monte Carlo

Program; EXAMPLE 6

DEMONSTRATING THE PERFORMANCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGRAM

EX&XP_E

,,_,'o_,,._cEre,trio,, _ = _ - Ts - "_ A - (,.-)F...8
B :_Z -, B_-o,_119

Variable Type Mean/Median Sod. Dev.l COY

LN

WEI

LN

0,_ _'

.0..-, 5 _
i

RESULTS:

•F-xact(a)
wlu/_I

Ho_ce Carlo

Variance

Reduction( d)

_onte Carlo

Conventional

(Bernoulll
parameter)(e)

Probabillcy
of Failure

1.901E-_

Total

CPU'Ttme(b)

19952G

Notes:

(a) Exact value using POFAIL if two variables. If more than two,

Wu/FPI is used; the exact should be vithin 5Z of this value.

(b) CYBER 175
z

(c) The number of Pi for variance reduction and the number of Zi

conventional. The values are not directly comparable.

(d) 95Z confidence intervals within -+i0% of PE

(e) Same confidence interval as variance reduction.

for
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Table 3.7 Example of the Performance of a Variance Reduction Monte Carlo

Program; EXA.V_PLE 7

DEMONSTRATING THE PERFO_Uu_NCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGIL_M

EX_"L'PLE ft.

Variable Type Mean/Median* Sod. Dev./ COV

P
P
T

VVei

LN

_VP

_8.0

20,0

9.0
0.16 _

RESULTS:

Exact (a)

Wu/FI'I

Honce Carlo

Variance

Reduction( d)

Monte Carlo

Conventional

(Bernoulli

paramete.r)(e)

Probability
of Failure

o.oo_82o8

Total

C_O:T_me(b)

i G.r_'T5

'[+.q-_8_o

Sample
Size, K (c)

_tc_9

Notes:

(a) Exact value usln E POFAIL if two variables. If more than Cwo,

Wu/FPI is used; the exact should be within 5Z of this value.

(b) CYBER 175

(c) The number of Pl for variance reduction and the number of Z i for

conventional. The values are not directly comparable.

(d) 95% confidence intervals wIchln ± 10% of PE

(e) Same confidence interval as variance reduction.
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Table 3.8 Example of the Performance of a Variance Reduction Monte Carlo

Program; EXAMPLE 8 "

DEMONSTRATING THE PERFORMANCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGRAM

Type

LN. I,_ * _,;_

N o

_cff "-_l + I- _,_ ,8_

Mean/Medlan* ' *Std. Dev./ COY

H LN

RESULTS :

Exact (a)

Wu/FPI

Monte Carlo

Variance

Reduction( d )

Monte Carlo

Conventional

(Bernoulli

parameter)(e)

Probability
of Failure

I. 0o_. E-z

ft. 88J q-E-;>

Total

CPO:Time(b)
Sample . ,
Size, K Lc)

o

Notes:

(a) Exac¢ value using POFAIL if two variables,

(b)

(c)

(d)

(e)

If more than two,

Wu/ITl is used; the exact should be within 5% of this value.

CYBER 175

The number of Pi for variance reduction and the number of Z i for

conventional. The values are not directly comparable.

95% confidence intervals within ± 10% of PE

Same confidence interval as variance reduction.
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Example of the Performance of a Variance Reducclon Monte Carlo

Program; EX_fPLE 9a

DEMONSTRATING THE PERFORMANCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGRAM

ZX  LE

PERFORMANCE FUNCTION:

Variable Type Mean/Medlan*

$

Sod. Dev.I COV

RESULTS :

Exact (a)

Wu/FP!

Monte Carlo

Variance

Reducclon(d)

Monte Carlo

Conventional

(Bernou111

parameter)(e)

Probabillcy
of Failure

Total

CP0:Time(b)

]ii[ I II

Sample
Size, K (c)

... _/

m,,

Notes:

(a) Exact value uslnE POFAIL if two variables. If more than two,

Wu/FPI is used; the exact should be within 5% of this value.

(b) CYBER 175

(c) The number of Pt for variance reduction and the number of Z1 for

conventional. The values are not directly comparable.

(d) 95% confidence intervals wlchln ± 10% of PE

(e) Smne confidence interval as variance reduction.
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Table 3.10 Example of the Performance of a Variance Reduction Monte Carlo

Program; EXAMPLE 9b

DEMONSTRATING THE PERFORMANCE OF TEE UA VARIANCE REDUCTION MONTE CARLO PROGRAM

PERFORMANCE FUNCTION :

Variable Type

LN

LN

q =P,-5
Mean/Medlan* e

Sod. Dev./ COV

0,2 _

¥
0,_

RESULTS:

Exact (a)

Wu/FPl

Monte Carlo

Variance
Reduction(d)

Monte Carlo

Convenclonal

(Bernoulli

parameter)(e)

Probability
of Failure

i.qq-_/+ E-_,

Total
CP0-"Time (b)

Sample
Size, K (c)

:_1 _77 b

Nocea:

(a) Exact value uslng POFAIL if two variables. If more than two,

Wu/F_I is used; the exact should be wlchln 5% of thls value.

(bl CYBER 175

(c) The number of Pi for variance reduction and the number of Z£ for

convenclonal. The values are not directly comparable,

(d) 95% confidence intervals within ± 10% of PE

(e) Same confidence interval as variance reduction.
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Table 3.11 Example of the Performance of a Variance Reduction Monte Carlo

Program; EXA_IPLE 9c

DEMONSTRATING THE PERFOkMANCE OF THE UA VARIANCE REDUCTION MONTE CARLO PROGRAM

PERFO.V_ANCE FUNCTION :

Variable Type

S c.N

Mean/Medlan*

4A

Std. Dev./ COV

"0,2
. i

4"
0,2

RESULTS:

Exact(a) '
Wul FPI

Monte Carlo

Variance

Reductlon( d)

Monte Carlo

Conventional

(Bernoulli

parameter)(e)

Probabll Ity

of Failure

Total

¢P0:T ne(b)
Sample
Size, K (c)

Notes:

(a) Exact value uslng POFAIL if two variables. If more than two,

Wu/FPI Is used; the exact should be within 5% of this value.

(b) CYBER 175

(c) The number of Pi for variance reduction and the number of Zt for

conventional. The values are not directly comparable.

(d) 95% confidence intervals within ± 10% of PE

(e) Same confidence interval as variance reduction.
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Table 3.12 Example of the Performance of a Variance Reduction Monte Carlo

Program; EXAMPLE 9d

DEMONSTRATING THE PEI_ORMANCE OF THE UA VARIANCE REDUCTION MONTECARLO PROGRAM

PERFO_W._NCI FUNCTION:

Variable Type

=R--S
Mean/Median*

e

Scd. Dev. / COV

,S IO.D

RESULTS:

Exact (a)
Wu/FPI

Monte Carlo

Variance
Reduction( d )

Monte Carlo

Convenclonal

(Bernoulli
parameter)(e)

Probabillcy
of Failure

Total
CP_;Time(b)

t') '77

_otes:

(a) Exact value uaing POFAIL if two variables.

(b)

(c)

(d)

(e)

If more than two,

Wu/FPI is used; the exact should be within 5% of this value.

CYBER 175

The number of Pi for variance reduction and the number of Zi for

conventional. The values are not directly comparable.

95% confidence Intervals wlchln ± 10% of PE

Same confidence interval as variance reduction.
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3.8 Comparison of Computer Costs of variance Reduction and Conventional

Monte Carlo

Example 9a, b, c, and d was designed to illustrate how computer costs

increase as point probabilities become smaller, providing estimates at the

same level of confidence. Figs. 3.5 and 3.6 show the relationship between

CYBER 175 CPU execution time and the probability level for the conventional

"Bernoulli" and the variance reduction estimates, respectively, for Example 9.

Then Fig. 3.7 demonstrates how much more efficient is variance reduction

for this problem. It should be noted that Figs. 3.5 through 3.7 relate

only to Example 9 and cannot be presented as being characteristic of the

relative behavior of the two methods.

3.9 Conclusions on Variance Reduction

Some general conclusions based on experiences exercising VARED are,

i. Variance reduction seems to outperform conventional Monte Carlo
[

consistently. However, in some cases the improvement is dramatic, in some

cases it is modest.

2. Related to item I, it is difficult to predict computer costs.

At a given confidence level, CPU time depends strongly upon the form of

the performance function, the distribution of the variables, as well as

the probability level.

3. To construct a CDF, it is necessary to obtain several point proba-

bility estimates, as it is using FPI. Thus, the variance reduction Monte

Carlo method is not particularly effective when it is required to construct

a distribution function of a response variable.
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_BERNOULLICPU TIME(SEC,)
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m
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! rlll_

PROBABILITYOFFAILURE

Fig. 3.5 CPU execution time for CYBER 175 for conventional Bernoulli

point probability estimate; Example 9; _ - 5%, y - I0%
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I00.0

I0,0

1.0--

__VAPIANCE _EDUCTDN

Z CPU TIME (SEC)

I0

[ Illl _

PRO_ABZLITYOFFAILURE

Fig. 3.6 CPU execution time for CYBER 175 for variance reduction

point probability estimate; Example 9; _ - 5_, y - 10S
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Fig. 3.7

io"B
o

m

m

n

10.--
P

m

I0° --
B

m

BERNOULLI CPU TIME

VARIANCE REPUCI"?ON C2U.TIM_

t!!l,lz[ ' ,', "II

I O_ I 0"%

PROBABILITY

I L,,,I,_I , I [I,=

16_

OF FAILURE

Ratio of Bernoulli to variance reduction CPU execution time

for CYBER 175 for point probability estimate; Example 9;

a - 5%; y . i0%
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APPENDIX A. RANDOH SA._IPLES FROM GIVEN DISTRIBUTIONS

Following are the algori=hms used to generate random varlates from

the normal, lognormal, Weibull, extreme value (Type I), and the Frechet

distributions. The computer, using a congruential algorithm, samples

random numbers u i from a uniform distribution U(O,I). Forms given below

transform uniform variates to variates X i of other models.

' (defined as having a negative correla=ion toAntlthetic variates xi

x.) are generated as shown. These antlthetlc variates are used in the
i

variance reduction method described in Section 3.0.

At Normal distribution, N(u, o); sample two uniform variates, u i

and ui+ I. Use the Box-Muller algori=hm [ i, 2].

xI =[_-2 £n(ul)" cos(2_ Ul+l) ] o + u"

B,

' = -x i + 2bx i

%

Lognormal distribution, LN(X, C_); sample two uniform variates,

L

u i and ui+ l. Use the Box-Muller algorithm [ I, 2 ].

a x - _n (i + C_)'

%

U = £n X
X

 nCui)=os(27Ui÷l)] °X+

x' = exp(-x + 2 pX )i i

C, Weibull distribution

Fx(X) - I -exp ( - (x_) ) - u _ t'[0,1]

1 - u " exp (_)) _ U[0,1]

a

- _n (I - u)-(_)

Thus,

I/_

" B(- _n (i - ui)x i

I/a
t

_(- _n (ui))x i
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DQ EVD distribution

Fx(X) - exp (-exp(-_(X - B)) " u _ U[O,l]

exp (-a(x- S)) " - _n u

- a(x - B) " _n (- _n u)

Thus,

I _n(- £n(ui))xi - B-[

I £n(- _n(l - ui))

E. Frechet distribution

kFx(X) ,. exp ,, u _, u[O,I]

V---)k - - £n(u)

Thus,

x =v ( _n ))i - (ui

-i/k

!

x i = v (- £n(l - ui))-I/k
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APPENDIX B. LISTING OF CONVENTIONAL MONTE CARLO PROGRAM (COMOC)

This version runs on the VAX and the CYBER 175. It is not interactive.

The performance function is introduced in subroutine LSFMC as XA.

See listing.

Card 1 Limit state function (not used in program; only printed on output)

Card 2 Number of trials; number of variables (free format)

Card 3 PLOT and ISTD type

PLOT: Yi's are sorted to construct empirical CDF

0 i no sort

1 i yi' s are sorted

ISTD; option to enter standard deviations or coefficients of

deviations or coefficients of variation of each variable

(if lognormal, always use COV).

0 * COV

I = Std. dev.

_ow enter each variable, its distribution type, and its moments.

Card 4 Variable name.

Card 5 Distribution, mean, and standard deviation

1 = WEI (Weibull)

2 - NORM (Normal

3 - EVD (Extreme value distribution)

4 - LN (Lognormal; always use median and COV)

5 i FRE (Frechet)

Then repeat 4 and 5 for all of the other variables.



Eo52
1:,m

2:

3:

4:

5:

b:

7:
B:

9:

11:

12:

13:

14:

Ib:

18:

I?:

20:

22:

23:

24:

25'

26:

27:

2B:

79:

30:

31z

'32:

33"

34:

35:

36,
37:

38:

39:
40:

41I

42I

43I
44:

45:

46:

47:

48:

49s

51:

53:

54:

55:

56:

57:

58:

0004

7901

913

C
C

1234

C
C*
C

C

PROGRAM GMC

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION INAME(40),XMEAN(4B),XSTD(40)tDIBT(40),DTRANS(40),X
DIMENSION Y(30000),F(5)tAL(40),BE(40)

COMMON /TWO/ PItPI2
CHARACTER*SO GRS,FINoFOUT,DTRANS*7,AAe7_BB*6_CC*3,DD*3,EE,
DATA AA/'WEIBULL'/
DATA BB/'NORMAL'/
DATA CC/'EVD'/

DATA DD/'LOG'/
DATA EE/'FRECHET'/

FORMAT(A10)
CONTINUE
READ(5,'(A)',END=888B) ORS
READ(5,*) K,N
READ(5,*) PLOT1,PLOT2,ISTD
READ(5,*) ISEED
DO 7901 I=I,N
READ(5,651) INAME(I)
READ(5,*) DIST(I),XMEAN(I),XSTD(I)
CONTINUE
IF(ISTD.EQ.O) THEN
DO 913 I=I,N
IF(DIST(I).EQ.4.) GO TO 913
XSTD(1)=XMEAN(I)*XSTD(I)

CONTINUE

END IF

DO 1234 I=I,N
AL(1)=O. DO

BE(1)=O.DO

CONTINUE

PI=4.DO*DATAN(I.DO)

PI2"PI+PI

DO 1 I=1 ,N
IF(DIST(1).EQ. 1.)

IF (DIST (1) •EQ. 2. )

IF (DIST (I) •EQ. 3. )

IF (DIST (1) .EQ. 4. )

IF (DIST (1) .EQ. 5. )

DTRANS(1)mAA

DTRANS(1)=BB

DTRANS(I)=CC

DTRANS(I)mDD
DTRANS(1)=EE

IF(DIST(I).EQ.1.)
IF(DIST(I).EQ.3.)
IF(DIST(I).EQ.5.)

CONTINUE

CONVENTIONAL

MONTE CARLO

PROGRAM (COHOC) :

Runs on the VAX

or CYBER 175

CALL WEI(XMEAN(I),XSTD(1),AL(I),BE(I))

CALL EVD(XMEAN(I),XSTD(I),AL(I),BE(I),PI]

CALL FRE(XMEAN(I),XSTD(1),AL(I)_BE(I))

THE DATA IS PRINTED OUT.

3

WRITE(6,11) GRS,K,N

WRITE(6,12)
WRITE(6,13)(INAME(1),DTRANS(1),XMEAN(1),XSTD(1),I'1,N)

GENERATE RANDOM # AND CORRESPONDING RANDOM VARIABLE

NUM=O

DO 4 I-I,K

DO 3 J'I,N
CALL GENX(DIST(J),AL(J),BE(J),X(J),XMEAN(J),XSTD(J),ISEED)

CONTINUE

CALL LSFMC(Y(I),N,X)
IF(Y(1).LE.O.DO) NUM'NUM+I



_0:
61:
62:

4 CONTINUE
123 CALL STAT(Y,K,YMEAN,YSTD,YMED,YCOV)
124 WRITE(b,15) YMEAN,YSTD,YMED,YCOV

63: C

64: C*
65 : C*

66: C

67:

68:

69:

70:

71: C

72: C*

73:

74:

75:92
76:

77: 1017

78:

79:

80: 3030
el: 1003
82:
83:
84:
85:

86:
B7:
B8:
89:
90: 30_I

91:

92 : 67

93:

94:

95:

96:

97:

98:

99:

100:

101:

102:

103: 1009
104: 3456
105:

10b:

107:

108:

109:

110:

111:

112:

113:

114:

115:

116:

117:
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ROUTINE TO ACCUMULATE NUMBER OF TRIALS WITH NEGATIVE Y(I)
VALUES AND PRINT OUT RESULTS

RATIO = DBLE(NUM)/DBLE(K)

WRITE(6,9) NUM,RATIO

? FORMAT(/,10X,'NUMBER OF NEG Y VALUES =',I5,'.',4X,
+'PERCENT OF TRIALSm'IFg.b)

THE SORTED VALUE OF Y AND THE EMPIRICAL CDF ARE PRINTED.
IF(PLOTI.EQ.O.) GO TO 92
CALL QSORT(Y,K)
IF(PLOT2.EQ.0.) G0 TO 3456

WRITE(6,1017)
FORMAT(////,14X,'SORTED VALUES OF Y AND THE EMPIRICAL CDF',
JI=1

J2=5

WRITE(6,1003) 31,(Y(1)tImJ1,J2)

FORMAT(IX,'I = ,15,5E13.5)
J1=J1+5

J2=J2+5

IF(JI.GT.K) GO TO 3031

IF(J2. GT.K) THEN

J2=K

GO TO 3030
END IF
GO TO 3030
CONTINUE

WRITE(6,67)
FORMAT(/)
J=O

J1=1

DO 1009 I=I,K
J=J+l

F (J) = (DBLE ( I )-. 5)/DBLE (K)
IF(J.EQ.5.0R.I.EQ.K) THEN

WRITE(6,1003) J1, (F(L),L=I,3)
J=O
J1=J1+5

END IF

CONTINUE
CONTINUE

11 FORMAT(5(/),30X,'MONTE CARLO SOLUTION',5(/),10X,

+'LIMIT STATE FUNCTION : ",A,5(/),10X,

+'SAMPLE SIZE, K='oI7//10X,'NUMBER OF RANDOM VARIABLESI N=',I3/I

12 FORMAT(2bX,'RANDOM VARIABLES',//10X,'VARIABLE',2X,

+'DISTRIBUTION',SXt'MEAN',12XI'STD DEV')

13 FORMAT(/11X,A7,SX,AT,SX,Ei2.5,SX,E12.5)

15 FORMAT(/////10X,'STATISTICS OF Y :'//10X,'MEAN =',E13.5//10_

+'STD DEV -',E13.5//10X,'MEDIAN =',EI3.5//10X,'COV =',

+E13.5,4(/))
17 FORMAT(1H1,2(/),14X,'SORTED VALUES OF Y AND THE EMFIRICAL CDF')
19 FORMAT((5E13.5))

GO TO 8004
118:8888 CONTINUE
119: 125 STOP
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120:
121:
122: C
123: C*
124: C*
125: C
126:
127:
12B:
129:
13B:
131:
132: 63
133:
134:
135:
136:
137: b4
138e
139:
14B:
141:
142:
143:

END
SUBROUTINE STAT(U_MgXM_STDIXMED,COV)

THIS SUBROUTINE CALCULATES THE STATISTICS

OF Y FUNCTION.

IMPLICIT DOUBLE PRECISION

DIMENSION U(M)

XK=M

XM-B.

DO b3 I=I,M
XM=XM+U(I)

CONTINUE

XM=XM/XK

STD-O.

DO b4 I'I,M
STD=STD+(U(I)-XM)**2

CONTINUE

STD=STD/(XK-1.DB)

STD-DSQRT(STD)
COV=STDIXM

XMED=XM/DSQRT(I.DO+COV**2)

RETURN

END

(A-H,O-Z)

(MEANISTD DEVtMEDIAN

144:

145:

146:

147: C

148:

149:

15B:

151: I

152:

153: 2

154:

155:

156:

157:3

158:
159:4

la0:

la1:

la2:

163:

164:

165:5

lb6:

167: __
168:

169:
17B: C

171: C

172:

173:

174:

175:

176:7

177:

17B:

179:

SUBROUTINE

IMPLICIT DOUBLE PRECISION

COMMON /TWO/ PI,PI2

GENX(DISTgALPHA_BETA,X,XMEANtXSTD, ISEED)

(A-H_O-Z)

IDIST=INT(DIST+.I)

AA=RAN(ISEED)

GO TO (I,2,3,4,5), IDIST
X=BETA*(-DLOG(AA))**(1.DO/ALPHA)

RETURN

BB=RAN(ISEED)

E=DSQRT(-2. DO*DLOG(AA))
X=E*DCOS(PI2*BB)*XSTD+XMEAN

RETURN

X-BETA-DLOG(-DLOG(AA))/ALPHA

RETURN

BB=RAN(ISEED)

SDX=DSQRT(DLOG(1.DO+XSTD**2))

UX=DLOG(XMEAN)

E-DSQRT(-2.DB*DLOG(AA))
X=DEXP(E*DCOS(PI2*BB)*SDX+UX)

RETURN
X-BETA*(-DLOG(AA))**(-1.DO/ALPHA)

RETURN

END

CENX obtains

random samples

from distributions

is library

uniform random

number generator

for CYBER 175

SUBROUTINE BISECT(COV,ISIGN,ALPHA)

IMPLICIT DOUBLE PRECISION (A-H_O-Z) ......

ISIGN = 1! WEIBULL DIST.
= 2; FRECHET DIST.

F(X_COV)m-(I.DB+COV**2)*GAMMA(X)**2÷GAMMA(2. eX)
IF(ISIGN.EQ.I) XlmCOV*e(I.BS)
IF(ISISN. EQ,2) XI=COV**(.b77)/2.33
IF(ISIGN.EQ.2.AND. XI.GT..49DB) XI=.48999999
IF(ISIGN. EQ. 1) FI=F(XI_COV)
IF(ISIGN.EQ.2) FlmF(-X1,COV)
IF(DABS(FI).LE.I.D-IB) 80 TO 1
X2=XI+.EIDB



180:

181:
182:

183:

184:

185:

186:
187:

188:

189:

190:

191:

192:

193:

194:

195:

196:

197:

20
2

IF(ISIGN.EQ.1) F2-F(X2,COV)
IF (ISIGN.EQ. 2) F2"F (-X2, COV)
F12-F1*F2

IF(FI2.LT.O.) GO TO 20
IF(DABS(F1).GT.DABS(F2)) Xl=X2
IF(DABS(F1).LT.DABS(F2)) Xl-Xl-.OIDO
GO TO 7

CONT I NUE
X3 =(X1+X2)*.SDO

IF(ISIGN.EQ.1) F13=F(XI,COV)*F(X3,COV)

IF(ISIGN. EQ.2) F13=F(-XI,COV)*F(-X3,COV)
IF(F13.LT.O.) X2=X3

IF(FI3.GT.O.) XI=X3

DX,,DABS (X 1-X2)

IF(DX.GE.I.D-9) GO TO 2

ALPHA= I.DO/X I

RETURN

END
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BISECT used ro

compute Welbull

and Frechet

shape parameter

(exponent)

198:

199:

200:

201 :

202 :

203:

204:
205:

SUBROUTINE

IMPLICIT DOUBLE PRECISION

COV=XDEV/XMEAN

CALL BISECT(COVtl,ALPHA)
ALI=I.DO/ALPHA

BETA=XMEAN/OAMMA(AL1)

RETURN

END

WEI(XMEANIXDEV,ALPHA,BETA)

(A-H,O-Z)

IComputes

Weibull

parameters

_O"g i
207 :

208:

209 :

210:

211:

212:
213:

SUBROUTINE

IMPLICIT DOUBLE PRECISION

COV=XDEV/XMEAN

CALL BISECT(COV,2,ALPHA)
ALI=I.DO/ALPHA

BETA=XMEAN/GAMMA(-ALI)
RETURN

END

FRE(XMEAN,XDEV,ALPHA,BETA)

(A-H,O-Z)

1 .

Computes

Frechet

parameters

214:

215:

21b:
217:

218:

219:

220:

221 :

222 :

223:

224:

225:

226 :

227:

228:

229 :
230:

231:

232:

233 :

234:
235:
236:
237 :

238:

239:

SUBROUTINE EVD(XMEAN,STD,ALPHA,BETAtPI)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
ALPHA=PI/(STD*DSQRT(a. DO))

BETA=XMEAN-.5772156a490153/ALPHA
RETURN

END

Computes

EVD

Parameters

456

3
457

$
$

DOUBLE PRECISION FUNCTION GAMMA(Y1)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

COMMON /TWO/ PI,PI2
X=YI+I.D+O

Z=X

IF(X.GE.6.0D_O)GO TO 456

N=INT(X)
Z=(6.0D+O)-N+X

Y=I.D+O/Z**2

ALG=(Z-.5D÷O)*DLOG(Z)+.5D+O*DLOG(PI2)-

Z-(1.D+O/(12.D+O*Z))*(((Y/O.14D+3-1.D÷O/O.105D+3)*Y+

1.D+O/.3D+2)*Y-I.D+0)

IF(X.GE.6.D+O)GO TO 457

ITE=6-N

DO 3 J=I,ITE
A=X÷J-1.D+O

ALG=ALG-DLOG(A)

CONTINUE

8AMMA=DEXP(ALG)

RETURN

P

The gamma Ifunct ion
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240: END
241 !
242:
243:
244:
245s
246i
247s
248:
249i
250:
251 :
252:
253 s
254:
255:
256:
257:
258:
259:
260:
261 I
262,
263,
264:
265"
266:
267 •
268:
269:
270:
271:
272.
273.
274:
275:
276:
277:
278:
279:
280:

281 :

282:

283:

10

20

30

40

SUBROUTINE QSORT(AvN)
IMPLICIT DOUBLE PRECISION (A-H_O-Z)

A(N) tKSL(24)tKSR(24)DIMENSION
KS=I
KSL(1)=I
KSR(1)=N
CONTINUE
L=KSL(KS)
KR=KSR(KS)
KS=KS-1

CONTINUE

I=L

3=KR
LR=(L+KR)/2
X=A(LR)
CONTINUE
IF(A(I).LT.X)
I=I+t

80 TO 30
END IF
CONTINUE
IF(X.LT.A(3))

J=J-1
00 TO 40
END IF
IF(I.LE.3)
WmA ( I )
A(I)=A(J)
A(J)=W
1=1+1

J=J-I
END IF
IF(I.LE.J)
IF(I.LT.KR)
KS=KS+I

KSL(KS)=I

KSR(KS)=KR

END IF

KR=J

IF(L.LT.KR)

IF(KS.NE.O)

RETURN

END

THEN

THEN

THEN

GO TO 30
THEN

GO TO 20
00 TO 10

r This Is the 1
sort routine,

QUICKSORT

o

284 :
285:

286:

287:

288:

289:

SUBROUTINE LSFMC(XA,N,X)
IMPLICIT DOUBLE PRECISION

DIMENSION X(N)

XA=X(1)-X(2)
RETURN

END

(A-H,O-Z)

This is where the

limit state is

introduced
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APPENDIX C. THE SORT ROUTINE: "QUICKSORT"

QUICKSORT iS described in detail in the book by Wirth [7], who describes

its performance as "spectacular," and claims that it is the best sorting

method on arrays known so far. The method Is based on exchanges and the

inventor C.A.R.Hoare recognized that sorting becomes most efflclent when

exchanges are made over large distances.

The table below shows execution times (in milliseconds) consumed by

several proposed sorting methods as executed by the PASCAL system on a

CDC 6400 computer. The three columns contain times used to sort the

already ordered array, a random permutation, and the inversely ordered

array. The left figure in each column is for 256 items, and right one

for 512 items.

In sunI_ary, the computational effort needed for QUICKSORT is of the

order of n log n.

Ordered Random Inversdy Ordered

Straight insertion 12

Binary insertion 56

Straight selection 489

Bubbleson 540

Bubblesort with flag 5

Shakersort $

Shellsort 58

Heapsort I 16

Quickson 31

Mergcsort 99

23 366 1444 704 2836

125 373 1327 662 2490

1907 509 1956 695 2675

2165 1026 4054 1492 5931

8 1104 4270 1645 6542

9 961 3642 1619 6520

I16 127 349 157 492

253 110 241 104 226

69 60 146 37 79

234 102 242 99 232

Execution Times of Sort Programs.
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APPENDIX D. LISTING OF THE VARIANCE REDUCTION MONTE CARLO PROGRAM (VARED)

This version runs on the VAX and the CYBER 175. It is not interactive.

The performance function is introduced in subroutine LSFMC, chert compiled

and linked to the rest of the program.

Data Input for the VAX Version Variance Reduction ProEram

Card i Limit State Function (not used for calculations in the program)

F.x: g - R - S or R = S, etc.

Card 2 Number of Trials (the preliminary value of K); Number of Variables;

Maximum Error in Secant Method for Solution of Maximum Impact

Variable (a small number)

Ex: 1000, 3, I.D-6

or 10000,5,1.D-7

Card 3 Confidence Interval; Ga,-_a; ISTD;

a. C.I. - 0 to I00 in percenc'_ Ex: 90; Implies 90% C.I.

< <

b. Camma 0 - y - I, but typically choose > from 0.05 to 0.20.

See Eq. 3.21 ff.

c. ISTD = OPTION to enter standard derivations and coefficients

of variation of each varlable (for LN Dist, always use COV)

0 = COV

1 = Std. dev.

Card 4 Enter ISEED

Any integer number between 0 and 262,139 to start the random sampling.

Ex: 23, 579, etc.

Card 5 Enter variable name. (Free format)
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Card 6 Enter corresponding distribution, mean, and standard deviation

(if LN always input median and COV); Ex: I, 20, 2

a. dist. - 1 - Weibull

2 ,,Normal

3 - EVD

4 - Lognormal (LN)

5 - Frechet

Then repeat 5 and 6 for all of the other variables.
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l:t

2:

4:

5:

6:
7:

8:

10:

11"

12:

13:

14:

15:

1,6:

17:

18:

19:

20"

21:

22:

23:

24:

25:

2b:
27:

28:

29:

30:

i._.,

34:

35:

3b:

37:

38:

39:

40:
41:

42:

43:

44:

45:

4b:

47:

48:
4c_:

50:

51:

52:

53:

54:

55:

5b:

57:

569:

59:

C

913

C
C

1234

C
C*
C
C

F&OG_AM GMC

IMFLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION INAME(20)_XMEAN(20)_XSTD(20),DIST(20),DTRANS(20),X(_
DIMENSION Y(10000),F(5),AL(20)_BE(20),XA(20),TX(20),TS(20)

COMMON /TWO/PI,SPI2,PI2

CHARACTER*70 GRS,FIN,FOUT,AA*7,BB*6,CC*3,DD*3,EE.7
CHARACTER*7 INAME,DTRANS
DATA AA/'WEIBULL'/
DATA BB/'NORMAL'/

DATA CC/'EVD'/

DATA DD/'LOG'/

DATA EE/'FRECHET'/

READ(5,'(A>',END=8888) GRS

READ(5,*) K,N,EPS

READ(5,*) ZAL,GAM,ISTD,PLOT
READ(5,*) ISEED

DO 7901 I=I,N

READ(5,'(A)') INAME(1)

READ(5,*) DIST(I),XMEAN(1)_XSTD(I)
CONTINUE

CONTINUE

IF(ISTD.EO.O) THEN

DO 913 I=I,N
IF(DIST(I).EO.4.) GO TO 913

XSTD(I)=XMEAN(I)*XSTD(I)
CONTINUE

END IF

IF(F_.GT.10000) K=10000

Program VARED. Monte

Carlo using variance

reduction method; runs

on she VAX or CYBER 175

D_ 1234 I=I,N
AL(1)=O. DO

BE(1)=@.D_

IF(DIST(1).EQ.4.) THEN

TX(1)=XMEAN(I)*DSQRT(1.DO+XSTD(I)**2)
TS(1)=TX(1)*XSTD(1)

ELSE

TX(1)=XMEAN(1)

TS(1)=XSTD(1)

END IF

CONTINUE

F I=4.DO*DATAN(I.DO)

PI2=PI÷FI

SFI2=I.DO/DSQRT(PI2)

DO 1 I=i ,N
IF(DIST(1).EQ. 1.)

IF (DIST (I) .EQ. 2. )

IF (DIST (I) .EfO.3. )
IF (DIST (1) .EQ. 4. )

IF (DIST (1) .EQ. 5. )

IF(DIST(1).EQ.1.)

IF(DIST(1).EQ.3.)

IF(DIST(1).EQ.5.)

CONTINUE

DTRANS (I) =AA

DTRANS (I) =BB

DTRANS (I) =CC

DTRANS (I) =DD

DTRANS (I) =EE

CALL WEI(XMEAN(I),XSTD(1),AL(I),BE(I))

CALL EVD(XMEAN(1),XSTD(1),AL(1),BE(I),PI)

CALL FRE(XMEAN(1),XSTD(I),AL(I),BE(I))

THE DATA IS PRINTED OUT.

MAIN LOOP USING ANTITHETIC VARIANCE REDUCTION METHOD



60:

61:

62:

63:

64:

65:

66:

67:

68:

69:

70:

71:
72:

73:

74:

75:
76:

77:

78:
79:

80:

81:
82:

83:

84"
85:

86:

87:

88:

89:

90:

91:

92:

93:
94:

95:
96:

97:

98:

99:

I@0:

101:

102:

103:
104:

105:

106:

107:

108:

109:

110:

111:
112:

113:

114:

115:

116:

117:

118:

119:

C

701

70@

C

9b

559

561

563

C

98

703

702

C

FIND MAX. IMPACT VARIABLE

DG=@.D@

CALL LSFMC(G,N,TX)

DO 700 I=I,N
TX(I)=TX(I)+TS(1)

CALL LSFMC(DGB,N,TX)
DGA=DGB-G

IF(DABS(DGA).LE.DABS(DG))

IV=I

DG=DGA

TX(I)=TX(I)-TS(1)

CONTINUE

80 TO 701

E-61

$

$

$

WRITE(6,11) GRS,K,N

WRITE(6,96) ZAL,GAM

FORMAT(10X,'CONFIDENCE INTERVAL = ",F&.2," %',//,

10X,'GAMMA = ",Fb.2,///)

WRITE(6,559) IV

FORMAT(10X,'MAX. IMPACT VARIABLE m X(',I2,')',/)
IF(DG.LE.O. DO) WRITE(a,561)

FORMAT(10X,'VARIABLE TYPE IS STRESS',///)

IF(DG.GT.O.DO) WRITE(6,563)

FORMAT(10X,'VARIABLE TYPE IS STRENGTH',///)

WRITE(6,12)

WRITE(6,13)(
CALCULATE

KI=I

K2=K

ICO=I

CONTINUE

DO 702 I=KI,K2

DO 703 J=I,N
IF(J.EQ. IV) GD TO

INAME(I>,DTRANS(I),gMEAN(1),XSTD(1),I=I,N)
PROB. OF FAILURE

703

CALL GENX(DIST(J),AL(J),BE(J),X(J),XA(J),XMEAN(J),XSTD(J),ISE
CONT INUE

IF (DG.GT. O.DO) A=TX (IV)-3. DO*TS (IV)

IF(DG.LE.O.DO) A=TX(IV)+2.DO*TS(IV)

B=A+TS (IV)

CALL SECA (EPS,A, B, IV,N, X)

CALL CDFPDF(DIST(IV),AL(IV),BE(IV),X(IV),XMEAN(IV),XSTD(IV),

1,CDFI ,PDF)
IF(DG. LE.O.DO) CDFI=I.DO-CDF1

IF (DG. GT.O. DO) A=TX (IV)-3. DO*TS (IV)
IF(DG.LE.@.DO) A=TX(IV)+2.DO*TS(IV)

B=A+TS (IV)

CALL SECA (EPS,A, B, IV,N, XA)

CALL CDFPDF(DIST(IV),AL(IV),BE(IV),XA IV),XMEAN(IV),XSTD(IV),

1,CDF2,PDF)
IF (DG. LE. 0. D¢) CDF2=I. DO-CDF2

Y (I) = (CDFI+CDF2)*. 5D0

CONT INUE

123 CALL

IF(ICO.EQ.I)

YM=YMEAN

YS=YSTD
YME=YMED

YC=YCOV

YMI=YM

ELSE

STAT(Y,K1,K2,YMEAN,YSTD,YMED,YCOV)
THEN
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120:

121:

122:

123:

124:

125:

126:

127:

12S:

129:

130:

131:

132:

133:

134:

135:

136:

137:

I_B:

139:

140:

141:

142:

143:

144:

145:

146:

147:

148:

149:

150:

151"

152:

153:

154:

155:

156:

157:

158:

i59:

160:

181:

162:

163:

164:

165:

166:

167:

168:

169:

170:

171:

172:

173:

174:

175:

176:

177:

178:

179:

176

C

C_

C

1017

99

II

S

$

fM=(K*YMI+(K2-K)*YMEAN)/K2

YSI=YS**2*(K-I)+K*YMI**2+YSTD**2*(K2-K-I)+(K2-K).YMEAN**2
YSD=YS1-K2*YM**2

YS=DSQRT(YS2/(K2-1))

YC=YS/YM

YME=YM/DSQRT(1.DO+YC**2)

END IF

ZALI=.OO5D0*(100. DO÷ZAL)

ZAX=XINV(ZAL1)

ZX=ZAX*YC/DSQRT(DBLE(K2))

PL=YM*(1.DO-ZX)

PU=YM*(I.DO+ZX)

WRITE(b,176) YM,ZAL,PL,PU

FORMAT(///,10X,'ESTIMATE OF P = ',E13.5_//,

10X,F5.2," % CONFIDENCE INTERVALS ARE',//,

10X,'PL = ',EI3.5_5X,'PU = "_E13.5,///)

WRITE(iS,15) YMEAN,YSTD,YMED,YCOV

IF(FLOT.EQ.O.) GO TO 345_

--CALL QSO _TI_ L..,-,_.
_, • . ,;°-6.

• THE SORTED VAt.t_E-_-A._'D ;;;F..F_.M:'II_IC_AL C_,"

W_ITECb,I_I7)

.... // Ia _ _e._._ V ^ _ _ ^_,_

Jl=l

J2=5

WEITE(6,1003) JI,(Y(1),I=J1,J2)

FORMAT(1X,'I = ',15,5E13.5)
J1=Jl+5

J2=J2+5

IF(J1.GT.K2) GO TO 3@31

IF(J2.GT.K2) THEN

J2=_2

GO TO 3_

END IF

GO TO 303_

CONTINUE

WRITE(&_67)
FORMAT(/)

J=O

Jl=l

DO 10_9 I=I,K2
J=J+1

F (J) = (DBLE (I)-. 5)/DBLE (K2)

IF(J.EQ.5.0R.I.EQ.K2) THEN

WRITE (6,1003) J1, (F (L) ,L=I ,J)
J=O

J1=J1+5

END IF

CONTINUE

CONTINUE

KI=K+I

K2=(YC*ZAX/GAM)**2+I

IF(ICO.EQ.1) WRITE(b,99) SAM,K2

FORMAT(//,10X,'K FOR GAMMA = ',F6.2, IS ',Ib)

ICO=ICO+I

IF(ICO.EQ.2.AND.K2. GT.K} GO TO 98

FORMAT(1HI,5(/),30X,'MONTE CARLO SOLUTION',5(/),10X,

+'LIMIT STATE FUNCTION : ',A,5(/),10X,

+'SAMPLE SIZE =',I7//10X,'NUMBER OF RANDOM VARIABLES = ,13//)



18_:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:

8301

8888

12 FORMAT(2bX,'RANDOMVARIABLES',//10X,'VARIABLE't2X,
÷'DISTRIBUTIDN',SXv'MEAN't12X_'STD DEV')

13 FORMAT(/IIX,A7,5X,A7,SX,E12.5,5X,E12.5)

15 FORMAT(/////10X,'STATISTICS OF P :'//10X,'MEAN

+'STD DEV =',E13.5//10X,'MEDIAN ='_E13.5,//10X,'COV

÷E13.5,////)

IF(ANS1.EQ.'F'.OR.ANS1.EQ.'_ ') 80 TO 8300

WRITE(b,8381)

FORMAT(' DO YOU HAVE ANOTHER DATA SET ?(Y/N) ",$)

READ(5,8001) ANS3

IF(ANS3.EQ.'Y'.OR.ANS3.EQ.'y') 80 TO 8304

CONTINUE

125 STOP

E-63

=',EI3.5//10X,

i" I

\

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION X(N)

237:

238:
23q:

SUBROUTINE SECA(EPS,A,B,IV,N,X)

212: GO TO 30 /
213: END IF /

214:40 CONTINUE H_/N/

J

215: IF (X.LT.A(J)) T

21b: O=J-1 /_

217: GO TO 40 / \,

219: IF(I.LE.J) T

220 : W=A (I ) /
221: A(1)=A(3)

222 : A (O )=W /

223: I=I+I /
224: \

226. IFI_,KLE.J) GO TO 30 ,

227: IFJ_I.LT.KR) THEN \

228: K_=KS+I

229: /KSL (KS) =I

230: /KSR(KS)=KR

231 / END
232. // KR=J

233: / IF(L.LT.KR) GO TO 20

234: / IF(KS.NE.O) GO TO 10

235:/ RETURN
?_aF, F_n, , _

Not needed for operational

version.

END
193_ _- , .
l_r4_ SUB_[JUTINE QSOF_T (A,N) /
195: _ IMPLICIT DOUBLE PRECISION (A-H,O-Z) /
19b: .. DIMENSION A(N),KSL(240),KSR(240) /

197, _ KS=I

198: _ KSL(1)=I

19¢_: _ KSR(1)=N //
200: 10 \ CONTINUE /

201 : \\L=KSL (KS)

202: KR=KSR (KS)

203: KS=KS- i
204:20 CONTINUE

2@5 : I=L\ ,
2o_,: ,,I=KR ' "

208: X=A (LR) \
20g: 30 CONTINUE'\ / Sort routine used orlginally

210: IF(A(1).LT,,X) THEN /

211: I=l+l ',, // for program development.
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24_:
241-

24 _
243:
244: 1

245:

24b:
247:

248:

249:
250:

251 :

252 :

253:

254 ;
255:

256:

257 :

258:

259:

260:

261 :

262:

263:

264:

265:

266:

267:

268:

269:

270:

271:

272:

273:

274:

275:

276"

277:

278:

279:

280:

281 :

282 :

283 :

284:

285:

28b:

287:

288:

289:

290:

291:

292:

293:5

294:

295:

29b:

297:

298:

X ( iv) =A l !

This defined the performance function ICALL LSFMC(U,N,X) I
X (IV) =B ]

CALL LSFMC (V,N, X)

CONT INUE t
IF (DABS (X (IV)-A). BE. EF'S) THEN This subroutine determines the

X (IV) =B-V* (B-A) / iV-U)
A=B point at which the CDF is

B=X (IV) evaluated for the maximum

U=V impact variable
CALL LSFMC(V,N,X) r

GO TO 1

END IF

RETURN

ENP

SUBROUTINE CDFPDF(DIST,ALPHA,BETA,X,XMEAN,XDEV,ICDF,CDF,PDF)

IMPLICIT DOUBLE PRECISION (A-HtO-Z)

COMMON /TWO/PI,SPI2,PI2

IDIST=INT(DIST+. I)

GO TO (1,2,3,4,5),IDIST

I RB=X/BETA

EW=RB**ALF HA
I

IF(EW.GT.200.) EW=200. Evaluates J
EXFWEI=DEXP (-EW) ICDF=I. DO-EXPWEI the CDF

IF(ICDF.EQ. 1) GO TO 10

PDF= (ALPHA/BETA) * (EW/RB)*EXPWEI

GO TO 10

2 Z=(X-XMEAN)/XDEV

CDF=CDFNOR (Z)

IF(ICDF.EQ. 1) GO TO 10

PDF=SPi2*DEXP (-Z**2*. 5D_)/XDEV

GO TO 1

3 EE=ALPHA*(x-BETA}

IF (EELGT.200.) EE=20Z.

YY=DEXP (-EE)

IF(YY.GT.200.) YY=200.

CDF=DEXP (-YY)

IF(ICDF.EQ. I) GO TO 10

EY=EE+YY

IF(EY.GT.200.) EY=200.

PDF=ALPHA*DEXP (-EY)

GO TO 10

4 CX21=XDEV**2+I. DO

YMEAN=DLOG (XMEAN)

YDEV=DSQRT (DLOG (CX21) )

Z = (DLOG (X)-YMEAN)/YDEV

CDF=CDFNOR (Z )

IF(ICDF.EO. 1) GO TO 10
EZ=- (Z**2) *. 5D0

IF(EZ.LE.-200.) EZ=-200.

PDF=SPI2*DEXP (EZ) / (YDEV*X)

SO TO 10

TEMP= (BETA/X)**ALPHA

CDF=DEXP (-TEMP)

IF(ICDF.EQ. I) GO TO 10

PDF=CDF*TEMP*ALPHA/X

1• RETURN

£ND

299: DOUBLE PRECISION FUNCTION XINV (Z)



300:

301 :
302 :

303:

304 :

305 :

306 :
307:

30G:

309 :
310:

311:
312:

313:

314:

315:
316:

317:

318:
319:

320:

321 :
322:

323:

324:

325:

326 :

327:
32B:

329 :

330:

:331:

IMPLICIT DOUBLE PRECISION

F(X,P1)=P1-CDFNOR(X)

Y=Z

IF(Z.GT.O.5DO) Y=I.DO-Z

C0=2.515517D0

C1=0.802853D0

C2=0.010328D0
D1"l.4327BSDO

D2"O. 187269DO

D3=O.001308DO
T=C-2.DO*DLOG(Y))**.SDO

DNUM'CO+T*(CI+T*C2)

DNOM'I.0DO+T*(DI+T*(D2+T*D3))

X=T-(DNUM/DNOM)

IF(Z.LT.O.5DO) X=-X
A=X

B=×+.OO1DO

V=F(B,Z)

U=F(A,Z)
XX=B

CONTINUE

IF(DABS(XX-A).GE.I.D-10)

XX=B-V*(B-A)/(V-U)

A=B

B=XX

U=V

V=F(XX_Z)
GO TO 1

END IF

XINV=XX

RETURN

END

(A-H,O-Z) E-65

THEN

I The inverse normal 1

using the secant

I method

332:

333:

334:

335:

336 :

337=

338 :
3-rwg:

340:
341:

342:

343:

344:
345:

346:
347:

348 :

349:

350 :

351 :

352:

353:

354 :

355 :

356:

357=

358:

359:

DOUBLE PRECISION FUNCTION CDFNDR(Z)

C THIS FUNCTION COMPUTES THE NORMAL CDF.

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

COMMON /TWO/PI,SPI2,PI2

DATA A/O.31938153DO/,B/-O_356563782DO/,C/I.781477937DO/,

÷D/-I.G21255978DO/,E/1.330274429DO/
EZ=,IZ**2)*.5DO

CDFNOR=O.0DO

IF(EZ.LE.-200.0DO) GO TO 1

ZX=SPI2*DEXP(EZ)

IFIDABS(Z).GT.6.DO) GO TO 2

T=I. DO/(1. DO+ (0. 231a419DO*DABS (Z)) )

CDFNOR=ZX*T* ¢A+T*(B+T* (C+T* (D+T*E)) ) )

GO TO 1

2 Z2=I.DO/(Z*Z)
CDFNOR=ZXe(1.DO-Z2*(1.DO-Z.DO*Z2*(I.DO-5. DO*Z2)))/DABS(Z)

1 IF(Z.GT.O.0DO) CDFNOR=I.0DO-CDFNOR

RETURN

END

SUBROUTINE _TAT(U,K1,K2,XM_ V)

C

C* THIS SUBROUTINE CALCULATES THE
C* OF Y FUNCTION.

C

IMPLICIT DOUBLE

DIMENSION U(K2)

XK=K2-KI+I

XM=O.

PRECISION

STATISTICS (MEAN,STD DEV,MEDIAN,COV)

(A-H,O-Z)



E-66

_60:

362:

.363:

364 :

_.65:

.366:

.367:

368 :

369:

.370:
371=

372 :

_7_;
374:

375:

376=
377=

378:
379-"

380 •

381:
382 =

383:

384:
385 :

386:

387:

388 :

389 :

390:

391:

392:

393:

394:

395 :

39b:

397:

398:

399 :

400:

401:

402:

b.:'

64

C

I

2

3

4

5

DO _3 I=KI,KD
XM=XM-,-U (i )

CON "rINUE

XM=XM/XK

STD:O.

DO b4 I=KI,K2

STD=STD+ (U (I)-XM) **2

CONT INUE -

STD=STD/(XK-1. DO)

STD=DSQRT (STD)

EOV=STD/XM

XMED=XM/DSQRT ( 1. DO÷COV**2)

RETURN

ENd)
SUBROUTINE

IMPLICIT DOUBLE PRECISION

COMMON /TWO/PI,SPI2,PI2

GENX (DIST,ALPHA,BETA,X,XA,XMEAN,XSTD, ISEED)

(A-H,O-Z) "I GENX obtains random

I samples from the

dlstrlbu_ ions

IDIST=INT(DIST+.I)

AA=RAN(ISEED) 1
GO TO (1,2,3,4,5), IDIST
X=BETA*(-DLOG(AA))**(I.DO/ALPHA)

XA=BETA*(-DLOG(1.DO-AA))**(1.DO/ALPHA)

RETURN

BB=RAN(ISEED)

E=DSQRT(-2.DO*DLOG(AA))

X=E*DCOS(PI2*BB)*XSTD+XMEAN

XA=-X+2.DO*XMEAN

RETURN

X=BETA-DLOG(-DLOG(AA))/ALPHA

XA=BETA-DLOG(-DLOG(1.DO-AA))/ALPHA

RETURN

BB=RAN(ISEED)

SDX=DSQET(DLOG(1.DO÷XSTD**2))

UX=DLOG(XMEAN)

W=DSQRT(-2.DO*DLOG(AA))*DCOS(PI2*B6)*SDX+UX

X=DEXP(W)

XA=DEXP(-W+2.DO*UX)

RETURN

X=BETA*(-DLOG(AA))**(-1.DO/ALPHA)

XA=BETA*(-DLOG(1.DO-AA))**(-I.DO/ALPHA)

RETURN

END

RAN is library

uniform random

number generator

for CYBER 175

403:

404:

4R55:

406:

4B7:

408:

409 :

410:

411:

412:

413:

414:

415:

416:

417:

418:

419:

C

C

7

SUBROUTINE SECAI(COV, ISIGN_ALPHA)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

ISIGN = I; WEIBULL DIST.

= 2i FRECHET DIST.

F(X,COV)=-(1.DO+COV**2)*GAMMA(X)**2+GAMMA(2.*X)
IF(ISIGN. EQ.1) X1=COV**(1.08)

IF(ISIGN.EQ.2) XI=COV**( 677)/2 ==

IF(ISIGN. EQ.2.AND. Xt.GT..49DO) XI=.48999999

IF(ISIGN. EQ. 1) FI=F(XI,COV)

IF(ISIGN. EQ.2> FI=F(-XI,EOV)

IF(DABS(F1).LE.1.D-10) GO TO I

X2=XI+.OIDO

IF(ISIGN.EQ.1) F2=F(X2,COV)

IF(ISIGN.EQ.2) F2=F(-X2,COV)

XX=X2

CONTINUE

IF(DABS(XX-XI).GE.J.D-9> THEN

I

Secan_ method for )

1computing Weibull
I

and Frechet exponents l
l



420:

421:

422:
Me e42._ •

424:

425 :

42&:

427:

428 :

429:

430 :
431 =

432:

433:

434:
435:

436:

437 :
438:

4_9;

440:

441:

442 :
443:

444:

445:

446:
447:

XX=X2-F2*(X2-XI)/(F2-FI)

XI=X2

X2=XX

FlmF2

IF(ISIGN.EQ. 1) F2uF(XX,COV)

IF (ISISN.EQ. 2) F2=F (-XX,COV)

GO TO 10

END IF
XI-XX

ALPHA=I.DO/XI

RETURN

END
SUBROUTINE WEI(X'MEAN_XDEV,ALPHA,BETA)

IMPLICIT DOUBLE PRECISION (A-H_O-Z)

COV=XDEV/XMEAN

CALL SECAI(COV,1,ALPHA)

ALI=I.DO/ALPHA

BETA=XMEAN/GAMMA(AL1)

RETURN

ENp

E-67

Computes Weibull

parameters

SUBROUTINE FRE(XMEAN,XDEV,ALPHA,BETA)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

COV=XDEV/XMEAN

CALL SECAI(COV,2_ALPHA)

ALI=I.DO/ALPHA

BETA=XMEAN/GAMMA(-ALI)

RETURN

END

Computes Frechec

parameters

4_

448 :

449:

450:

451:

452:

453:

454:

455:

45&:

457 :

458:

459:

460:

461:

462 : 45&

463:

464:
465:

46&:
4&7:

468:

469:

470:

471 : 3

472: 457

473:

474:

475:

SUBROUTINE EVD(XMEAN,STD,ALPHA,BETA,PI)

IMPLICIT DOUBLE PRECISION (A-H,_-Z)

ALPHA=PI/(STD*DSQRT(&.DO))

BETA=XMEAN-.577215&&490153/ALPHA

RETURN

END

Computes EVD

parameters

$

$

DOUBLE PRECISION FUNCTION GAMMA(Y1)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

COMMON /TWO/PI,SPI2,PI2

X=YI+I.D÷O

Z=X

IF(X.GE.6._D+O)GO TO 45&

N=INT(X)

Z=(6.0D+O)-N+X

Y=I.D÷O/Z**2

ALG-(Z-.SD+O)*DLOG(Z)+.5D+O*DLOG(PI2)-

I The gamma Ifuhccton

Z-(1.D+0/(12.D+O*Z))*(((Y/O. 14D+3-I.D+O/O.105D+3)*Y+

1.D+O/.3D+2)*Y-1.D+O)

IF(X.GE.&.D+O)O0 TO 457

ITE=6-N

DO 3 J=I,ITE

A=X÷J-1.D+O

ALG=ALG-DLOG(A)

CONTINUE

GAMMA=DEXP(ALG)

RETURN

END

Note: The performance function must be introduced in subroutine LSFMC.

For an example of subroutine LSFMC, see the last page of Appendix B.
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Introduction

The structural reliability analysis methods developed during the past

ten to fifteen years can be used to establish the CDF of complicated

structural response Function by forming the so-called limit state function

or performance function [1]. In the application of these methods [2 - 4],

the Taylor's series expansions are taken at the most probable points. For

a given response function value, there Is a corresponding most probable

point which needs to be found using proper optimization or iteration

algorithm. Because at each of the most probable point, there is no error

in the function and the error is small around the most significant region

for probability calculations, reasonably accurate solutions are assured.

Indeed, experience has indicated that the applications of these methods

usually results in high quality CDF estimation. However, when the response

function is complicated, and the computations of the response variables are

tedious, the above methods tend to be difficult to be implemented and/or

are prohibitively time-consuming.

°_

Presented here Is a more efficient scheme _hich is suitable for

constructing the cumulative distribution function (CDF) of any complicated

function which has no explicit form, i.e., the objective function can not

be expressed in algebraic form. The method is particularly suitable for

the cases where the computation of the objective function is time consuming

such that the Monte Carlo method becomes prohibitively costly.

Efficient Method of Constructing CDF using the Most Probable Points

The efficient method of constructing the CDF of a function starts with

a linear approximation of the response function about the mean values of

the independent random variables. Then the CDF values and the associated

most probable points for several "predicted" response function values will

be computed. For any selected CDF value, however, the "predicted" response

function is not accurate if the response function is nonlinear, therefore,

the corresponding response Function value will be "corrected" by solving

the actual values at the predicted most probable point.
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In order to show how the method works, a simple example is established

to detail the above procedure. The example is a cantilever beam. The

random variables involved are the applied force, P, and the length, L,

which are assumed to be normally distr!buted variables. The mean and

standard deviation of P are (0.223, 0.019) Ibs. and the mean and standard

deviation of L are (20, I) inches. The maximum stress, S, at the fixed end

of the beam is:

S = 787LP (I)

The mean value of S is approximately 3500 psi.

Define the reduced variables uI and u2 as

uI = (P - 0.223)/0.019

u2 = (L - 20.)/1.

Thus

(2)

(3)

P = 0.223 + O.Olgu I (4)

L : 20 + u2 (5)

By substituting equations 5 and 6 into equation I, the stress becomes

S = 3510 + 300u I + 175u2 + 15ulu 2 (6)

By assigning a value for S, an iso-stress curves can be plotted on a two

dimensional u space as shown in Figure i. Note that uI and u2 are

standardized normal variables (with zero mean and unity standard deviation)

because P and L are normal variables. Therefore, on the Ul,U 2 coordinate

system, the joint probability density function is rotationally symmetric.

The most probable point for a given S is easily identified as the point on

a iso-stress curve which is nearest to the origin.

Now we can start the approximation procedure by taking the first order
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expansion of $ about the mean. Usually, one will operate on the L, P space

and then transform to u1, u2 space. In this example, since the

transformations are linear, we can use Eq. 6 directly. The first order

expansion about the mean values (uI - 0 and u2 = O) results in

S = 3510 + 300u I + 175u2 (7)

This equation is exact at uI = u2 = 0 (where S = 3510) only, but can be

used as an approximation for other S values.

Based on Eq. 7, S is also a normal variable with a mean of 3510 and a

standard deviation of 347. It is obvious, however, that the accuracy of

the CDF of S will depend on the truncated higher order terms.

Traditionally, a low order expansion (such as eq. 7) is only used to

estimate the mean and the standard deviation. The CDF cannot be accurately

approximated.

For illustration purposes, only one CDF value will be considered. Let

SI = 3510 psl and S2 = 4500 psi where S1 curveir_S linear and passes through

the origin and S2 is parallel to SI in the u space. S 2 may be called a

"predicted" stress since eq. 7 is assumed to hold for all the stress values.

The predicted S2 curve has a most probable point which Is a point nearest

to the origin. Assuming that eq. 7 is accurate, the first order

reliability analysis method gives the following probability estimate:

P(S > 4510 psi) = }(- B) (8)

where B is the minimum distance. The approximation, however, is not

accurate because the most probable point derived was based on the

inaccurate S equation. In fact, by substituting the most probable point

(derived by assuming S=4500 in Eq. 7) into Eq. 6, the exact value is S =

4660 psi. The iso-stress curves SI, S2 and the exact S = 4660 are shown in

Fig. 1. The exact curve is nonlinear and passing through the predicted

most probable point. Since the predicted and the corrected curve match

closely around the most probable region for S > 4660 (note that in Fig. 1,

the two minimum distances are approximately equal.), the figure suggests
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the following approximation:

P(S Exact > 4660) - P(S Predicted > 4510) (9)

Mathematical Formulations

The above approximation can be formulated as follows. Let

Z(X) ffia0 + zaiX i + E = Zp + E

where Z(X) is a function of the random variables, X. Zp is a random

variable representing the sum of the Taylor's first order terms and E

represents the sum of the higher order term. The error term should

actually be a random variable, but in the present method it will be

approximated by a deterministic value. E is defined based on the most

probable point, i.e.,

(lO)

E = Z(most probable point for Zp = Zp) - Zp (11)

where the most probable point is defined as a set of values of X which

maximize the joint probability density function of X subjected to the

constraint that Zp(X) = Zp. The most probable point can be found using the

reliability analysis method [1).

Define the exact deterministic value of Z as z, then,

P(Z > z) = P(Zp + E > z)

= P(Zp > z - E) (12)

" = P(Zp > Zp)

where Zp is the predicted Z value using Zp. Equation 12 can be stated as :

the probability of exceedance of Zp at Zp is approximately equal to the
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probability of exceedanceof the exact Z at the value of z computed using

the most probable point of Zp=zp. By replacing Z by $, Zp by 4510, and z by
4610, Eq. 12 becomesEq. g.

To construct the entire CDF, the above demonstrated procedure can be

repeated for other probability levels. Note that there is no limitation on

the number of random variables and that the random variables can be any

distribution.

The first order Zp seems to be able to provide good approximation

solutions as demonstrated in the following example. Improvements can be

made by including the second order terms in Zp. Alternatively, one can

perform additional first order Zp analyses at the tall regions using the

predicted most probable points.

Establishing CDF - Example

The above algorithm has been used successfully to establish a CDF of

a problem. The problem is similar to the previous cantilever beam problem

except that the thickness of the beam is also modelled as a random

variable. The goal is to estimate the CDF of the maximum stress.

Figure 2 shows the resulting CDF based on the analytical solution of

the stress. CDF curves are plotted on the normal probability paper (the

CDF of a normally distributed variable will be a linear line on this

paper); the Y coordinate uses u as the basic unit where u is a standardized

normal varlates.

Using the conventional first-order-mean-expansion, the resulting CDF,

in Fig. 2, is nearly a straight line indicating that S is approximately

normal. This is because the approximating function is linear and the

random variables studied are normal or nearly normal.

By applying the new algorithm, ten most probable points corresponding

to ten CDF values are computed, and used to compute ten additional
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deterministic solutions. These "new" stress values are the corrected

values for the "old" CDF values. Figure 2 shows that the corrected CDF

curve is very close to the "exact" (based on one millton Monte Carlo

simulations) CDF curve except at the region where u < -3, as shown In Fig.

2.

In this example, the difference between Ze and Zp ranges from 0.2 %

(for u = -0.5) of Ze to 32 _ (for u = -4.3) of Ze, suggesting that the

response function is significantly nonlinear. This is reflected by the

fact that, in Fig. 2, the corrected CDF curve is significantly non-normal.

Therefore, by using the new algorithm, it is possible to assess the results

by comparing Ze and Zp. Improvement is necessary only when the difference

is large.

To improve the accuracy at the tail regions, there are two possible

ways : (i). Take two more expansions at the tail regions (e.g., at u =

-2.5 and u - 2.5). (2). Use quadratic or incomplete quadratic

approximation about the mean values. The first method may be more

appropriate when the quadratic approximations are difficult to obtain

although the latter may provide more accurate results for problems

involving highly nonlinear functions.

The performance of the new algorithm has also been evaluated using

Fig. 3. In this figure, the CDFs of the three mean-based approximations

to the exact solution are constructed to compare with the exact CDF. The

three approximations are: linear, "incomplete" quadratic (second order

mixed-terms are neglected), and (complete) quadratic expansions about the

mean values of the independent random variables. By comparing the results

of Fig. 3 with those of Fig. 2, it can be concluded that the new

algorithm with only first order expansion performs better than the

conventional quadratic expansion. Due to the fact that the complete

quadratic approximations are much more difficult to obtain than the first



F-7

order approximations, the new algorithm with only first order approximation

seems to be very suitable for estimating the CDFs for complicated

functions.

Summary

The performance of the new algorithm using the demonstrated example is

excellent by noting that only a number of deterministic solutions, in

additional to the first-order-mean-expanslon, are required. The results

suggest that the new procedure is efficient and can be used to provide good

CDF estimations for engineering analysis problems.
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